【題目】如圖,直角梯形,將沿折起來,使平面平面.如圖,設(shè)的中點(diǎn),,的中點(diǎn)為.

)求證:平面.

)求平面與平面所成銳二面角的余弦值.

)在線段上是否存在點(diǎn),使得平面,若存在確定點(diǎn)的位置,若不存在,說明理由.

【答案】1)證明見解析;(2;(3)不存在,理由見解析.

【解析】

1)通過面面垂直的性質(zhì)證得;

2)建立空間直角坐標(biāo)系,計(jì)算出兩個(gè)半平面的法向量所成角的余弦值即可得解;

3)假設(shè)存在,設(shè)出點(diǎn)的坐標(biāo),利用求解,找出矛盾.

1,的中點(diǎn)為,連接,必有

由題:平面平面,交線為平面,

根據(jù)面面垂直的性質(zhì)可得平面

2)取中點(diǎn),連接,則

由圖1直角梯形可知,為正方形,

所以

由(1平面,所以兩兩互相垂直,分別以軸的正方向建立空間直角坐標(biāo)系如圖所示,

,

所以,

設(shè)平面的法向量為,

,取,則

即平面的法向量為,平面,

取平面的法向量

平面與平面所成銳二面角的余弦值;

3)假設(shè)線段上是否存在點(diǎn),使得平面,設(shè)

所以,必有

,解得,與矛盾,

所以線段上不存在點(diǎn),使得平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)時(shí),求函數(shù)的最大值;

2)令其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;

3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺(tái)“延遲退休年齡政策”.為了了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖如圖所示, 支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如表:

年齡(歲)

支持“延遲退休年齡政策”人數(shù)

15

5

15

28

17

(I)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表;

年齡低于45歲的人數(shù)

年齡不低于45歲的人數(shù)

總計(jì)

支持

不支持

總計(jì)

(II)通過計(jì)算判斷是否有的把握認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的態(tài)度有差異.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】遞增的等差數(shù)列的前項(xiàng)和為.是方程的兩個(gè)實(shí)數(shù)根.

1)求數(shù)列的通項(xiàng)公式;

2)當(dāng)為多少時(shí),取最小值,并求其最小值;

3)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)賣場(chǎng)對(duì)市民進(jìn)行國(guó)產(chǎn)手機(jī)認(rèn)可度的調(diào)查,隨機(jī)抽取名市民,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)和頻數(shù)分布表和頻率分布直線圖如下:

分組(歲)

頻數(shù)

合計(jì)

(1)求頻率分布表中的值,并補(bǔ)全頻率分布直方圖;

(2)在抽取的這名市民中,按年齡進(jìn)行分層抽樣,抽取人參加國(guó)產(chǎn)手機(jī)用戶體驗(yàn)問卷調(diào)查,現(xiàn)從這人中隨機(jī)選取人各贈(zèng)送精美禮品一份,設(shè)這名市民中年齡在內(nèi)的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本x(單位:萬元)與產(chǎn)品銷售收入y(單位:萬元)存在較好的線性關(guān)系,下表記錄了最近5次該產(chǎn)品的相關(guān)數(shù)據(jù).

x(萬元)

3

5

7

9

11

y(萬元)

8

10

13

17

22

1)求y關(guān)于x的線性回歸方程;

2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本12萬元的毛利率更大還是投入成本15萬元的毛利率更大(毛利率)?

相關(guān)公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)口袋中有個(gè)白球和個(gè)紅球(,且),每次從袋中摸出兩個(gè)球(每次摸球后把這兩個(gè)球放回袋中),若摸出的兩個(gè)球顏色相同為中獎(jiǎng),否則為不中獎(jiǎng).

(1)試用含的代數(shù)式表示一次摸球中獎(jiǎng)的概率;

(2)若,求三次摸球恰有一次中獎(jiǎng)的概率;

(3)記三次摸球恰有一次中獎(jiǎng)的概率為,當(dāng)為何值時(shí),取最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P—ABCD中,底面ABCD是菱形,∠ABC=60°,PA=AC,PB=PD=AC,EPD的中點(diǎn),求證:

(1)PB∥平面ACE;

(2)平面PAC⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)是棱的中點(diǎn).直線與平面的距離為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案