已知平面區(qū)域的外接圓軸交于點(diǎn),橢圓以線段
為長軸,離心率
(1)求圓及橢圓的方程;
(2)設(shè)橢圓的右焦點(diǎn)為,點(diǎn)為圓上異于的動點(diǎn),過原點(diǎn)作直線的垂線交直線于點(diǎn),判斷直線與圓的位置關(guān)系,并給出證明。

當(dāng)時,,故直線PQ始終與圓C相切
解:(1)由題意可知,平面區(qū)域是以及點(diǎn)為頂點(diǎn)的三角形,
,∴為直角三角形,∴外接圓以原點(diǎn)為圓心,
線段為直徑,故其方程為.                   ……4分
.又,∴,可得
∴所求橢圓的方程是.                     ……………6分
(2)直線與圓相切.設(shè),則
當(dāng)時,,,∴; ……8分
當(dāng)時,,∴.                 ……9分
∴直線的方程為.因此,點(diǎn)的坐標(biāo)為.∵,
∴當(dāng)時,;
當(dāng)時候,,∴,∴.        ………12分
綜上所述,當(dāng)時,,故直線PQ始終與圓C相切. ………13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知焦點(diǎn)在x軸上,離心率為的橢圓的一個頂點(diǎn)是拋物線的焦點(diǎn),過橢圓右焦點(diǎn)F的直線l交橢圓于A、B兩點(diǎn),交y軸于點(diǎn)M,且
(1)求橢圓的方程;
(2)證明:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知兩定點(diǎn)滿足條件的點(diǎn)P的軌跡是曲線E,直線與曲線E交于A、B兩點(diǎn)。
(1)求的取值范圍;
(2)如果且曲線E上存在點(diǎn)C,使,求的值及點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)我國計(jì)劃發(fā)射火星探測器,該探測器的運(yùn)行軌道是以火星(其半徑百公里)的中心為一個焦點(diǎn)的橢圓. 如圖,已知探測器的近火星點(diǎn)(軌道上離火星表面最近的點(diǎn))到火星表面的距離為百公里,遠(yuǎn)火星點(diǎn)(軌道上離火星表面最遠(yuǎn)的點(diǎn))到火星表面的距離為800百公里. 假定探測器由近火星點(diǎn)第一次逆時針運(yùn)行到與軌道中心的距離為百公里時進(jìn)行變軌,其中、分別為橢圓的長半軸、短半軸的長,求此時探測器與火星表面的距離(精確到1百公里).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選修4-1:幾何證明選講
△ABC內(nèi)接于⊙O,AB=AC,直線MN切⊙O于C,弦BD∥MN,AC、BD交于點(diǎn)E
(1)求證:△ABE≌△ACD
(2)AB=6,BC=4,求AE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知兩點(diǎn)M(-1,0), N(1, 0), 且點(diǎn)P使成公差小于零的等差數(shù)列.
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)若點(diǎn)P的坐標(biāo)為(x0, y0), 記θ為,的夾角, 求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線與曲線有公共點(diǎn),則b的取值范圍是
A.[,]B.[,3]
C.[-1,]D.[,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在中,,邊上的高分別為、,則以、為焦點(diǎn),且過、的橢圓與雙曲線的離心率的倒數(shù)和為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若拋物線的焦點(diǎn)與橢圓右焦點(diǎn)重合,則的值為(  )
A.-2B.2C.-4D.4

查看答案和解析>>

同步練習(xí)冊答案