已知函數(shù),.
(1)求的極值點(diǎn);
(2)對(duì)任意的,記上的最小值為,求的最小值.
(1)是極大值點(diǎn),是極小值點(diǎn);(2).

試題分析:(1)利用導(dǎo)數(shù)求出函數(shù)的兩個(gè)極值點(diǎn),并結(jié)合導(dǎo)數(shù)符號(hào)確定相應(yīng)的極大值點(diǎn)與極小值點(diǎn);(2)在(1)的基礎(chǔ)上,對(duì)與極小值的大小作分類討論,結(jié)合圖象確定的表達(dá)式,然后再根據(jù)的表達(dá)式確定相應(yīng)的最小值.
試題解析:(1),
解得:,
當(dāng)時(shí),
當(dāng)時(shí),
所以,有兩個(gè)極值點(diǎn):
是極大值點(diǎn),;
是極小值點(diǎn),;
(2)過點(diǎn)作直線,與的圖象的另一個(gè)交點(diǎn)為
,即
已知有解,則,
解得
當(dāng)時(shí),;
當(dāng)時(shí),,
其中當(dāng)時(shí),;
當(dāng)時(shí),,;
所以,對(duì)任意的,的最小值為(其中當(dāng)時(shí),).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=exkx2,x∈R.
(1)若k,求證:當(dāng)x∈(0,+∞)時(shí),f(x)>1;
(2)若f(x)在區(qū)間(0,+∞)上單調(diào)遞增,試求k的取值范圍;
(3)求證:<e4(n∈N*)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(Ⅰ)若在x=處的切線與直線4x+y=0平行,求a的值;
(Ⅱ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)的圖象與x軸交于A,B兩點(diǎn),線段AB中點(diǎn)的橫坐標(biāo)為,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)若,且對(duì)于任意恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè)函數(shù),
求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=lnx-ax(a>0).
(I)當(dāng)a=2時(shí),求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)若對(duì)于任意的x∈(0,+),都有f(x)<0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若曲線在x=l和x=3處的切線互相平行,求a的值及函數(shù)的單調(diào)區(qū)間;
(2)設(shè),若對(duì)任意,均存在,使得,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)當(dāng)a=4時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)g(x)在區(qū)間上的最小值;
(Ⅲ)若存在,使方程成立,求實(shí)數(shù)a的取值范圍(其中e=2.71828是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求的極值;(2)當(dāng)時(shí),討論的單調(diào)性;
(3)若對(duì)任意的恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為R上的可導(dǎo)函數(shù),且,均有,則有       ( 。
A.,
B.,
C.,
D.,。

查看答案和解析>>

同步練習(xí)冊(cè)答案