已知函數(shù).
(Ⅰ)若,且對于任意恒成立,試確定實數(shù)的取值范圍;
(Ⅱ)設(shè)函數(shù)
求證:
(Ⅰ)(Ⅱ)詳見解析

試題分析:(Ⅰ)是偶函數(shù),只需研究對任意成立即可,即當
(Ⅱ)觀察結(jié)論,要證,即證,變形可得,
可證.問題得以解決.
試題解析:(Ⅰ)由可知是偶函數(shù).
于是對任意成立等價于對任意成立.  (1分)

①當時,
此時上單調(diào)遞增.  故,符合題意.(3分)
②當時,
變化時的變化情況如下表:                 (4分)









單調(diào)遞減
極小值
單調(diào)遞增
由此可得,在上,
依題意,,又
綜合①,②得,實數(shù)的取值范圍是.               (7分)
(Ⅱ),


(10分)
,
                 (12分)
由此得:

成立.        (14分).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖像過坐標原點,且在點處的切線的斜率是
(1)求實數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對任意給定的正實數(shù),曲線上是否存在兩點,使得是以為直角頂點的直角三角形,且此三角形斜邊的中點在軸上?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)設(shè)函數(shù)的極值.
(2)證明:上為增函數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(Ⅰ)求函數(shù)單調(diào)遞增區(qū)間;
(Ⅱ)當時,求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80,已知貨車每小時的運輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為a元.
(1)將全程運輸成本y(元)表示為速度v()的函數(shù),并指出這個函數(shù)的定義域;
(2)為了使全程運輸成本最小,貨車應(yīng)以多大的速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中是自然對數(shù)的底數(shù),.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)求的極值點;
(2)對任意的,記上的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中為常數(shù).
(Ⅰ)若函數(shù)是區(qū)間上的增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)若時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),,(其中),設(shè).
(Ⅰ)當時,試將表示成的函數(shù),并探究函數(shù)是否有極值;
(Ⅱ)當時,若存在,使成立,試求的范圍.

查看答案和解析>>

同步練習(xí)冊答案