【題目】已知中心在原點的雙曲線的右焦點為,右頂點為

)求雙曲線的方程;

)若直線與雙曲線交于不同的兩點,,且線段的垂直平分線過點,求實數(shù)的取值范圍.

【答案】(1);(2).

【解析】試題分析:(1)由雙曲線的右焦點為,右頂點為求出,進而根據(jù)求得,則雙曲線方程可得;(2)把直線方程與雙曲線方程聯(lián)立,消去,利用判別式大于求得的不等式關(guān)系,設(shè)的中點為,根據(jù)韋達定理表示出,根據(jù),可知的斜率為,進而求得的關(guān)系,最后綜合可求得的范圍.

試題解析:)設(shè)雙曲線方程為

由已知得,,

故雙曲線的方程為

)聯(lián)立,

整理得

∵直線與雙曲線有兩個不同的交點,

,

可得.(

設(shè),的中點為

由題意,

整理得.(

將()代入(),得,

,即

的取值范圍是

【方法點晴】本題主要考查待定系數(shù)求橢圓方程以及直線與橢圓的位置關(guān)系,屬于難題. 用待定系數(shù)法求橢圓方程的一般步驟;①作判斷:根據(jù)條件判斷橢圓的焦點在軸上,還是在軸上,還是兩個坐標軸都有可能;②設(shè)方程:根據(jù)上述判斷設(shè)方程 ;③找關(guān)系:根據(jù)已知條件,建立關(guān)于、的方程組;④得方程:解方程組,將解代入所設(shè)方程,即為所求.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)公差不為零的等差數(shù)列{an}的前5項的和為55,且a2 , ﹣9成等比數(shù)列.
(1)求數(shù)列{an}的通項公式.
(2)設(shè)數(shù)列bn= ,求證:數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù),若的圖象上相鄰兩條對稱軸的距離為,圖象過點.

(1)求表達式和的單調(diào)增區(qū)間;

(2)將函數(shù)的圖象向右平移個單位,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,若函數(shù)在區(qū)間上有且只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù),其中a為常數(shù).

I)若x=1是函數(shù)的一個極值點,求a的值

II)若函數(shù)在區(qū)間(-1,0)上是增函數(shù),求a的取值范圍

III)若函數(shù),在x=0處取得最大值,求正數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】程大位是明代著名數(shù)學家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作,它問世后不久便風行宇內(nèi),成為明清之際研習數(shù)學者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對推動漢字文化圈的數(shù)學發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個,問該若干?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,求得該垛果子的總數(shù)為( )

A. 120 B. 84 C. 56 D. 28

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場對顧客實行購物優(yōu)惠活動,規(guī)定一次購物付款總額:

(1)如果不超過200元,則不給予優(yōu)惠;

(2)如果超過200元但不超過500元,則按標價給予9折優(yōu)惠;

(3)如果超過500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠.

某人單獨購買A,B商品分別付款168元和423元,假設(shè)他一次性購買AB兩件商品,則應(yīng)付款是

A. 413.7B. 513.7C. 546.6D. 548.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分分)

已知圓,過點作直線交圓、兩點.

)當經(jīng)過圓心時,求直線的方程.

)當直線的傾斜角為時,求弦的長.

)求直線被圓截得的弦長時,求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分分)

已知半徑為的圓的圓心在軸上,圓心的橫坐標是整數(shù),且與直線相切.

(Ⅰ)求圓的方程.

)設(shè)直線與圓相交于, 兩點,求實數(shù)的取值范圍.

)在()的條件下,是否存在實數(shù),使得點, 兩點的距離相等,若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,不等式f(x)≤3的解集為[﹣1,5].
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案