【題目】(本小題滿分分)
已知圓,過點(diǎn)作直線交圓于、兩點(diǎn).
(Ⅰ)當(dāng)經(jīng)過圓心時,求直線的方程.
(Ⅱ)當(dāng)直線的傾斜角為時,求弦的長.
(Ⅲ)求直線被圓截得的弦長時,求以線段為直徑的圓的方程.
【答案】(1)(2) (3)
【解析】試題分析:(1)求出圓的圓心,代入直線方程,求出直線的斜率,即可求直線l的方程;(2)當(dāng)直線l的傾斜角為45°時,求出直線的斜率,然后求出直線的方程,利用點(diǎn)到直線的距離,半徑,半弦長的關(guān)系求弦AB的長;(3)利用垂徑公式,明確是的中點(diǎn),進(jìn)而得到以線段為直徑的圓的方程.
試題解析:
()圓的方程可化為,圓心為,半徑為.
當(dāng)直線過圓心, 時, ,
∴直線的方程為,即.
()因?yàn)橹本的傾斜角為且過,所以直線的方程為,即.
圓心到直線的距離,
∴弦.
()由于,而弦心距,
∴,∴是的中點(diǎn).
故以線段為直徑的圓圓心是,半徑為.
故以線段為直徑的圓的方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當(dāng)促銷費(fèi)用為萬元時,銷售量萬件滿足(其中, 為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品萬件還需投入成本萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價格定為萬元/萬件.
(1)將該產(chǎn)品的利潤萬元表示為促銷費(fèi)用萬元的函數(shù);
(2)促銷費(fèi)用投入多少萬元時,廠家的利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,D為BC邊上的中點(diǎn),P0是邊AB上的一個定點(diǎn),P0B= AB,且對于AB上任一點(diǎn)P,恒有 ≥ ,則下列結(jié)論中正確的是(填上所有正確命題的序號).
①當(dāng)P與A,B不重合時, + 與 共線;
② = ﹣ ;
③存在點(diǎn)P,使| |<| |;
④ =0;
⑤AC=BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn)的雙曲線的右焦點(diǎn)為,右頂點(diǎn)為.
()求雙曲線的方程;
()若直線與雙曲線交于不同的兩點(diǎn),,且線段的垂直平分線過點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.a∈R,“ <1”是“a>1”的必要不充分條件
B.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
C.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
D.命題p:“?x∈R,sinx+cosx≤ ”,則¬p是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分分)
如圖,在中, , , 分別為, 的中點(diǎn),點(diǎn)為線段上的一點(diǎn),將沿折起到的位置,使,如圖.
(Ⅰ)求證: 平面.
(Ⅱ)求證: .
(Ⅲ)線段上是否存在點(diǎn),使平面?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,且,設(shè)命題:函數(shù)在上單調(diào)遞減;命題:函數(shù) 在上為增函數(shù),
(1)若“且”為真,求實(shí)數(shù)的取值范圍
(2)若“且”為假,“或”為真,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com