1
1×2
+
1
2×3
+
1
3×4
+…+
1
99×100
的值.將程序補(bǔ)充完整并將與其功能相同的當(dāng)型程序框圖畫出來!
程序:
S=0
I=1
DO
S=
 

 

LOOP UNTIL
 

PRINT S
END
(1)
 

(2)
 

(3)
 
考點(diǎn):設(shè)計(jì)程序框圖解決實(shí)際問題
專題:操作型,算法和程序框圖
分析:利用當(dāng)型程序,結(jié)合求和運(yùn)算,即可得出結(jié)論.
解答: 解:由題意,(1)S+1/I*(I+1);
(2)I=I+1;
(3)I>=99
當(dāng)型程序框圖:

故答案為:S+1/I*(I+1);I=I+1;I>=99.
點(diǎn)評:本題考查的知識點(diǎn)是設(shè)計(jì)程序框圖解決實(shí)際問題,其中熟練掌握利用循環(huán)進(jìn)行累加和累乘運(yùn)算的方法,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1}.
(1)若A⊆B,求m的取值范圍;
(2)若B⊆A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x,y)在直線x+2y=3上移動,求2x+4y的最小值,并指出取最小值時(shí)的x與y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-1<x<2},B={x|3m-1<x<2m},若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差為2的等差數(shù)列,且a3+1是a1+1與a7+1的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
an-1
2n
(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知R為全集,A={x|x2-5x+4<0},B={x|
x-3
x+2
≤0},求:
(1)A∪B;
(2)(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-a+lnx
x
在x=e上取得極值,a,t∈R,且t>0.
(Ⅰ)求a的值;
(Ⅱ)求函數(shù)g(x)=(x-1),f(x)在(0,t]上的最小值;
(Ⅲ)證明:對任意的x1,x2∈(
1
t
,+∞),且x1≠x2,都
x1f(x1)-x2f(x2)
x1-x2
<t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-2<x<3},B={x|m<x<m+9},若A∩B≠∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+2ln(1-x),其中a∈R.
(1)是否存在實(shí)數(shù)a,使得f(x)在x=
1
2
處取極值?試證明你的結(jié)論;
(2)若f(x)在[-1,
1
2
]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案