在一個花瓶中裝有6枝鮮花,其中3枝山茶花,2枝杜鵑花和1枝君子蘭,從中任取2枝鮮花.
(1)求恰有一枝山茶花的概率;
(2)求沒有君子蘭的概率.
(1);(2).
解析試題分析:本題是古典概型的概率計算問題,古典概型的概率計算,關(guān)鍵是計算出基本事件總數(shù),某個事件發(fā)生時所包含的基本事件數(shù),然后代入公式即可求解,本題采用列舉法找出從6枝鮮花中任取2枝鮮花的所有可能有15種,對于(1)“恰有一枝山茶花”事件包含了9種基本事件,對于(2)“沒有君子蘭”事件則包含了10種基本事件,然后按照古典概率的計算公式進(jìn)行計算即可.
試題解析:設(shè)3枝山茶花為,2枝杜鵑花為,1枝君子蘭為. 則從6枝鮮花中任取2枝的基本事件有: , 共15種 4分
(1)其中恰有一枝山茶花的基本事件有:共9種,所以恰有一枝山茶花的概率為 8分
(2)其中沒有君子蘭的基本事件有: 共10種,所以沒有君子蘭的概率為 12分.
考點:古典概型的概率計算.
科目:高中數(shù)學(xué) 來源: 題型:解答題
某公司銷售、、三款手機(jī),每款手機(jī)都有經(jīng)濟(jì)型和豪華型兩種型號,據(jù)統(tǒng)計月份共銷售部手機(jī)(具體銷售情況見下表)
| 款手機(jī) | 款手機(jī) | 款手機(jī) |
經(jīng)濟(jì)型 | |||
豪華型 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在打靶訓(xùn)練中,某戰(zhàn)士射擊一次的成績在9環(huán)(包括9環(huán))以上的概率是0.18,在8~9環(huán)(包括8環(huán))的概率是0.51,在7~8環(huán)(包括7環(huán))的概率是0.15,在6~7環(huán)(包括6環(huán))的概率是0.09.計算該戰(zhàn)士在打靶訓(xùn)練中射擊一次取得8環(huán)(包括8環(huán))以上成績的概率和該戰(zhàn)士打靶及格(及格指6環(huán)以上包括6環(huán))的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲、乙、丙三人進(jìn)行乒乓球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時,負(fù)的一方在下一局當(dāng)裁判.設(shè)各局中雙方獲勝的概率均為,各局比賽的結(jié)果相互獨立,第1局甲當(dāng)裁判.
(1)求第4局甲當(dāng)裁判的概率;
(2)用X表示前4局中乙當(dāng)裁判的次數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某市四所中學(xué)報名參加某高校今年自主招生的學(xué)生人數(shù)如下表所示:
中學(xué) | | | | |
人數(shù) | | | | |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
佛山某中學(xué)高三(1)班排球隊和籃球隊各有名同學(xué),現(xiàn)測得排球隊人的身高(單位:)分別是:、、、、、、、、、,籃球隊人的身高(單位:)分別是:、、、、、、、、、.
(Ⅰ) 請把兩隊身高數(shù)據(jù)記錄在如圖所示的莖葉圖中,并指出哪個隊的身高數(shù)據(jù)方差較小(無需計算);
(Ⅱ) 利用簡單隨機(jī)抽樣的方法,分別在兩支球隊身高超過的隊員中各抽取一人做代表,設(shè)抽取的兩人中身高超過的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某高中為了推進(jìn)新課程改革,滿足不同層次學(xué)生的需求,決定從高一年級開始,在每周的周一、周三、周五的課外活動期間同時開設(shè)數(shù)學(xué)、物理、化學(xué)、生物和信息技術(shù)輔導(dǎo)講座,每位有興趣的同學(xué)可以在期間的任何一天參加任何一門科目的輔導(dǎo)講座,也可以放棄任何一門科目的輔導(dǎo)講座。(規(guī)定:各科達(dá)到預(yù)先設(shè)定的人數(shù)時稱為滿座,否則稱為不滿座)統(tǒng)計數(shù)據(jù)表明,各學(xué)科講座各天的滿座的概率如下表:
根據(jù)上表:
(Ⅰ)求數(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座的概率;
(Ⅱ)設(shè)周三各輔導(dǎo)講座滿座的科目數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在一個盒子里裝有4枝圓珠筆,其中3枝一等品,1枝三等品
(1)從盒子里任取2枝恰有1枝三等品的概率多大?
(2)從盒子里第一次任取1枝(不放回),第二次任取1枝;第一次取的是三等品,第二次取的是一等品的概率有多大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com