【題目】某小區(qū)規(guī)劃時,計劃在周邊建造一片扇形綠地,如圖所示已知扇形綠地的半徑為50米,圓心角從綠地的圓弧邊界上不同于A,B的一點P處出發(fā)鋪設(shè)兩條道路PO與均為直線段,其中PC平行于綠地的邊界記其中
當(dāng)時,求所需鋪設(shè)的道路長:
若規(guī)劃中,綠地邊界的OC段也需鋪設(shè)道路,且道路的鋪設(shè)費用均為每米100元,當(dāng)變化時,求鋪路所需費用的最大值精確到1元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某體校為了備戰(zhàn)明年四月份省劃艇單人雙槳比賽,對本校甲、乙兩名劃艇運動員在相同條件下進(jìn)行了6次測試,測得他們劃艇最大速度單位:數(shù)據(jù)如下:
甲:27,38,30,37,35,31;
乙:33,29,38,34,28,36.
試用莖葉圖表示甲、乙兩名運動員測試的成績;
根據(jù)測試的成績,你認(rèn)為派哪名運動員參加明年四月份的省劃艇單人雙槳比賽比較合適?并說明你的理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,∠BAD=120°,對角線AC與BD交于點O,M為OC中點.
(1)求證:BD⊥PM
(2)若二面角O﹣PM﹣D的正切值為2 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙H被直線x-y-1=0,x+y-3=0分成面積相等的四個部分,且截x軸所得線段的長為2。
(I)求⊙H的方程;
(Ⅱ)若存在過點P(0,b)的直線與⊙H相交于M,N兩點,且點M恰好是線段PN的中點,求實數(shù)b的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1(側(cè)棱垂直于底面的棱柱為直棱柱)中,BC=CC1=1,AC=2,∠ABC=90°.
(1)求證:平面ABC1⊥平面A1B1C;
(2)設(shè)D為AC的中點,求平面ABC1與平面C1BD所成銳角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】調(diào)查某校 100 名學(xué)生的數(shù)學(xué)成績情況,得下表:
一般 | 良好 | 優(yōu)秀 | |
男生(人) | 18 | ||
女生(人) | 10 | 17 |
已知從這批學(xué)生中隨機(jī)抽取1名學(xué)生,抽到成績一般的男生的概率為0.15.
(1)求的值;
(2)若用分層抽樣的方法,從這批學(xué)生中隨機(jī)抽取20名,問應(yīng)在優(yōu)秀學(xué)生中抽多少名?
(3)已知,優(yōu)秀學(xué)生中男生不少于女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)系方程;
(2)設(shè)直線l與曲線C相交于A,B兩點,求∠AOB的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com