【題目】正方體ABCD﹣A1B1C1D1中,E、F分別是棱AD、DD1的中點,若AB=4,則過點B,E,F(xiàn)的平面截該正方體所得的截面面積S等于

【答案】18
【解析】解:∵正方體ABCD﹣A1B1C1D1中,E、F分別是棱AD、DD1的中點, ∴EF∥AD1∥BC1
∵EF平面BCC1 , BC1平面BCC1
∴EF∥平面BCC1 ,
由線面平行性質(zhì)定理,過EF且過B的平面與面BCC1的交線l平行于EF,l即為BC1
由正方體的邊長為4,可得BE=C1F= ,BC1=2EF=4 ,
截面是等腰梯形,其高為3
其面積S= h= =18.
所以答案是:18.

【考點精析】通過靈活運用平面的基本性質(zhì)及推論,掌握如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi);過不在一條直線上的三點,有且只有一個平面;如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c
(1)若a,b,c成等比數(shù)列, ,求 的值;
(2)若A,B,C成等差數(shù)列,且b=2,設A=α,△ABC的周長為l,求l=f(α)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓O1:(x﹣2)2+y2=16和圓O2:x2+y2=r2(0<r<2),動圓M與圓O1、圓O2都相切,切圓圓心M的軌跡為兩個橢圓,這兩個橢圓的離心率分別為e1 , e2(e1>e2),則e1+2e2的最小值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,| |= ,| |=t,若P點是△ABC所在平面內(nèi)一點,且 = + ,當t變化時, 的最大值等于(
A.﹣2
B.0
C.2
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣1)ex+ax2有兩個零點. (Ⅰ)求a的取值范圍;
(Ⅱ)設x1 , x2是f(x)的兩個零點,證明x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=aex(a≠0),g(x)=x2(Ⅰ)若曲線c1:y=f(x)與曲線c2:y=g(x)存在公切線,求a最大值.
(Ⅱ)當a=1時,F(xiàn)(x)=f(x)﹣bg(x)﹣cx﹣1,且F(2)=0,若F(x)在(0,2)內(nèi)有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來我國電子商務行業(yè)迎來篷布發(fā)展的新機遇,2015年雙11期間,某購物平臺的銷售業(yè)績高達918億人民幣.與此同時,相關管理部門推出了針對電商的商品和服務的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.
(1)是否可以在犯錯誤概率不超過0.1%的前提下,認為商品好評與服務好評有關?
(2)若將頻率視為概率,某人在該購物平臺上進行的5次購物中,設對商品和服務全好評的次數(shù)為隨機變量X: ①求對商品和服務全好評的次數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學期望和方差.

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點F1、F2是雙曲線C: =1(a>0,b>0)的左、右焦點,O為坐標原點,點P在雙曲線C的右支上,且滿足|F1F2|=2|OP|,|PF1|≥3|PF2|,則雙曲線C的離心率的取值范圍為(
A.(1,+∞)
B.[ ,+∞)
C.(1, ]
D.(1, ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 經(jīng)過點M(﹣2,﹣1),離心率為 .過點M作傾斜角互補的兩條直線分別與橢圓C交于異于M的另外兩點P、Q. (I)求橢圓C的方程;
(II)試判斷直線PQ的斜率是否為定值,證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案