已知橢圓(a>b>0)的離心率為,右焦點(diǎn)為(,0).
(I)求橢圓的方程;
(Ⅱ)過(guò)橢圓的右焦點(diǎn)且斜率為k的直線與橢圓交于點(diǎn)A(xl,y1),B(x2,y2),若, 求斜率k是的值.
(Ⅰ)(Ⅱ)
解析試題分析:(Ⅰ)由右焦點(diǎn)可知,由離心率可求,根據(jù)可求。(Ⅱ)設(shè)出直線方程,然后聯(lián)立,消掉y(或x)得到關(guān)于x的一元二次方程,再根據(jù)韋達(dá)定理得出根與系數(shù)的關(guān)系式。先求出再將、代入求得的值。
試題解析:解(Ⅰ)因?yàn)橛医裹c(diǎn)為(,0),所以。因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/17/d/1pg5p2.png" style="vertical-align:middle;" />,所以。
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b4/c/duukd2.png" style="vertical-align:middle;" />,所以
故橢圓方程為. 5分
(Ⅱ)因?yàn)橹本過(guò)右焦點(diǎn),設(shè)直線的方程為 .
聯(lián)立方程組
消去并整理得. (*)
故,.
.
又,即.
所以,可得,即.
考點(diǎn):橢圓的基礎(chǔ)知識(shí)、直線與橢圓的位置關(guān)系,考查分析問(wèn)題、解決問(wèn)題以及化歸與轉(zhuǎn)化的能力,考查綜合素質(zhì)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線,點(diǎn),過(guò)的直線交拋物線于兩點(diǎn).
(1)若線段中點(diǎn)的橫坐標(biāo)等于,求直線的斜率;
(2)設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,求證:直線過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)點(diǎn)、分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為.
(I)求橢圓的方程;
(II)設(shè)直線(直線、不重合),若、均與橢圓相切,試探究在軸上是否存在定點(diǎn),使點(diǎn)到、的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓的右頂點(diǎn)為A(2,0),點(diǎn)P(2e,)在橢圓上(e為橢圓的離心率).
(1)求橢圓的方程;
(2)若點(diǎn)B,C(C在第一象限)都在橢圓上,滿足,且,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知分別是橢圓的左、右焦點(diǎn),橢圓與拋物線有一個(gè)公共的焦點(diǎn),且過(guò)點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于、兩點(diǎn),若(為坐標(biāo)原點(diǎn)),試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知過(guò)點(diǎn)的橢圓:的右焦點(diǎn)為,過(guò)焦點(diǎn)且與軸不重合的直線與橢圓交于,兩點(diǎn),點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為,直線,分別交橢圓的右準(zhǔn)線于,兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)的坐標(biāo)為,試求直線的方程;
(3)記,兩點(diǎn)的縱坐標(biāo)分別為,,試問(wèn)是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知是橢圓的右焦點(diǎn);圓與軸交于兩點(diǎn),其中是橢圓的左焦點(diǎn).
(1)求橢圓的離心率;
(2)設(shè)圓與軸的正半軸的交點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),試判斷直線與圓的位置關(guān)系;
(3)設(shè)直線與圓交于另一點(diǎn),若的面積為,求橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形是一個(gè)面積為的正方形(記為)
(Ⅰ)求橢圓的方程
(Ⅱ)設(shè)點(diǎn)是直線與軸的交點(diǎn),過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn),當(dāng)線段的中點(diǎn)落在正方形內(nèi)(包括邊界)時(shí),求直線斜率的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓錐曲線的兩個(gè)焦點(diǎn)坐標(biāo)是,且離心率為;
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)曲線表示曲線的軸左邊部分,若直線與曲線相交于兩點(diǎn),求的取值范圍;
(Ⅲ)在條件(Ⅱ)下,如果,且曲線上存在點(diǎn),使,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com