【題目】在邊長(zhǎng)為的等邊三角形中,點(diǎn)分別是邊上的點(diǎn),滿足且,將沿直線折到的位置. 在翻折過(guò)程中,下列結(jié)論成立的是( )
A.在邊上存在點(diǎn),使得在翻折過(guò)程中,滿足平面
B.存在,使得在翻折過(guò)程中的某個(gè)位置,滿足平面平面
C.若,當(dāng)二面角為直二面角時(shí),
D.在翻折過(guò)程中,四棱錐體積的最大值記為,的最大值為
【答案】D
【解析】
利用反證法可證明A、B錯(cuò)誤,當(dāng)且二面角為直二面角時(shí),計(jì)算可得,從而C錯(cuò)誤,利用體積的計(jì)算公式及放縮法可得,從而可求的最大值為,因此D正確.
對(duì)于A,假設(shè)存在,使得平面,
如圖1所示,
因?yàn)?/span>平面,平面平面,故,
但在平面內(nèi),是相交的,
故假設(shè)錯(cuò)誤,即不存在,使得平面,故A錯(cuò)誤.
對(duì)于B,如圖2,
取的中點(diǎn)分別為,連接,
因?yàn)?/span>為等邊三角形,故,
因?yàn)?/span>,故
所以均為等邊三角形,故,,
因?yàn)?/span>,,,故共線,
所以,因?yàn)?/span>,故平面,
而平面,故平面平面,
若某個(gè)位置,滿足平面平面,則在平面的射影在上,也在上,故在平面的射影為,所以,
此時(shí),這與矛盾,故B錯(cuò)誤.
對(duì)于C,如圖3(仍取的中點(diǎn)分別為,連接)
因?yàn)?/span>,所以為二面角的平面角,
因?yàn)槎娼?/span>為直二面角,故,所以,
而,故平面,因平面,故.
因?yàn)?/span>,所以.
在中,,
在中,,故C錯(cuò).
對(duì)于D,如圖4(仍取的中點(diǎn)分別為,連接),
作在底面上的射影,則在上.
因?yàn)?/span>,所以且,所以其.
又
,
令,則,
當(dāng)時(shí),;當(dāng)時(shí),.
所以在為增函數(shù),在為減函數(shù),故.
故D正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知.
(Ⅰ)求的值;
(Ⅱ)若,△ABC的周長(zhǎng)為7,求b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地舉辦水果觀光采摘節(jié),并推出配套旅游項(xiàng)目,統(tǒng)計(jì)了4月份100名游客購(gòu)買(mǎi)水果的情況,得到如圖所示的頻率分布直方圖.
(1)若將消費(fèi)金額不低于80元的游客稱為“水果達(dá)人”,現(xiàn)用分層抽樣的方法從樣本的“水果達(dá)人”中抽取5人,求這5人中消費(fèi)金額不低于100元的人數(shù);
(2)從(1)中的5人中抽取2人作為幸運(yùn)客戶免費(fèi)參加配套旅游項(xiàng)目,請(qǐng)列出所有的可能結(jié)果,并求這2人中至少有1人購(gòu)買(mǎi)金額不低于100元的概率;
(3)為吸引顧客,該地特推出兩種促銷方案,
方案一:每滿80元可立減8元;
方案二:金額超過(guò)50元但又不超過(guò)80元的部分打9折,金額超過(guò)80元但又不超過(guò)100元的部分打8折,金額超過(guò)100元的部分打7折.
若水果的價(jià)格為11元/千克,某游客要購(gòu)買(mǎi)10千克,應(yīng)該選擇哪種方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市場(chǎng)研究人員為了了解產(chǎn)業(yè)園引進(jìn)的甲公司前期的經(jīng)營(yíng)狀況,采集相應(yīng)數(shù)據(jù),對(duì)該公司2017年連續(xù)六個(gè)月的利潤(rùn)進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖,如圖所示:
(1)折線圖可以看出,可用線性回歸模型擬合月利潤(rùn)(單位:百萬(wàn)元)與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)該公司2018年1月份的利潤(rùn);
(2)甲公司新研制了一款產(chǎn)品,需要采購(gòu)一批新型材料,現(xiàn)有采購(gòu)成本分別為10萬(wàn)元包和12萬(wàn)元包的、兩種型號(hào)的新型材料可供選擇,按規(guī)定每種新型材料最多可使用4個(gè)月,不同類型的新型材料損壞的時(shí)間各不相同,已知生產(chǎn)新型材料的企業(yè)乙對(duì)、兩種型號(hào)各100件新型材料進(jìn)行過(guò)科學(xué)模擬測(cè)試,得到兩種新型材料使用壽命頻數(shù)統(tǒng)計(jì)如表:
使用壽命 材料類型 | 1個(gè)月 | 2個(gè)月 | 3個(gè)月 | 4個(gè)月 | 總計(jì) |
20 | 35 | 35 | 10 | 100 | |
10 | 30 | 40 | 20 | 100 |
經(jīng)甲公司測(cè)算,平均每包新型材料每月可以帶來(lái)5萬(wàn)元收入,不考慮除采購(gòu)成本之外的其他成本,假設(shè)每包新型材料的使用壽命都是整數(shù)月,且以頻率作為每包新型材料使用壽命的概率,如果你是甲公司的負(fù)責(zé)人,以每包新型材料產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款新型材料?
參考數(shù)據(jù):,.
參考公式:回歸直線方程為,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線和直線的直角坐標(biāo)方程;
(Ⅱ)直線與軸交點(diǎn)為,經(jīng)過(guò)點(diǎn)的直線與曲線交于,兩點(diǎn),證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的連續(xù)函數(shù)對(duì)任意實(shí)數(shù)滿足,,則下列命題正確的有________.
①若,則函數(shù)有兩個(gè)零點(diǎn);
②函數(shù)為偶函數(shù);
③;
④若且,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)談?wù)摵瘮?shù)的零點(diǎn)個(gè)數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C:x2=6y與直線l:y=kx+3交于M,N兩點(diǎn).
(1)設(shè)M,N到y(tǒng)軸的距離分別為d1,d2,證明:d1d2為定值.
(2)y軸上是否存在點(diǎn)P,使得當(dāng)k變動(dòng)時(shí),總有∠OPM=∠OPN?若存在,求以線段OP為直徑的圓的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩陣,,直線經(jīng)矩陣所對(duì)應(yīng)的變換得到直線,直線又經(jīng)矩陣所對(duì)應(yīng)的變換得到直線,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com