【題目】自由購是通過自助結(jié)算方式購物的一種形式. 某大型超市為調(diào)查顧客使用自由購的情況,隨機抽取了100人,統(tǒng)計結(jié)果整理如下:
20以下 | 70以上 | ||||||
使用人數(shù) | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數(shù) | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)現(xiàn)隨機抽取 1 名顧客,試估計該顧客年齡在且未使用自由購的概率;
(Ⅱ)從被抽取的年齡在使用自由購的顧客中,隨機抽取3人進一步了解情況,用表示這3人中年齡在的人數(shù),求隨機變量的分布列及數(shù)學(xué)期望;
(Ⅲ)為鼓勵顧客使用自由購,該超市擬對使用自由購的顧客贈送1個環(huán)保購物袋.若某日該超市預(yù)計有5000人購物,試估計該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個環(huán)保購物袋.
【答案】;(Ⅱ)詳見解析;(Ⅲ)2200
【解析】
(Ⅰ)隨機抽取的100名顧客中,年齡在[30,50)且未使用自由購的有3+14=17人,由概率公式即可得到所求值;
(Ⅱ)所有的可能取值為1,2,3,求出相應(yīng)的概率值,即可得到分布列與期望;
(Ⅲ)隨機抽取的100名顧客中,使用自由購的有44人,計算可得所求值.
(Ⅰ)在隨機抽取的100名顧客中,年齡在[30,50)且未使用自由購的共有3+14=17人,
所以,隨機抽取1名顧客,估計該顧客年齡在[30,50)且未使用自由購的概率為.
(Ⅱ)所有的可能取值為1,2,3,
,
,
.
所以的分布列為
1 | 2 | 3 | |
所以的數(shù)學(xué)期望為.
(Ⅲ)在隨機抽取的100名顧客中,
使用自由購的共有人,
所以該超市當(dāng)天至少應(yīng)準(zhǔn)備環(huán)保購物袋的個數(shù)估計為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程是,曲線的極坐標(biāo)方程是.
(1)求直線l和曲線的直角坐標(biāo)方程,曲線的普通方程;
(2)若直線l與曲線和曲線在第一象限的交點分別為P,Q,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解甲、乙兩班的數(shù)學(xué)學(xué)習(xí)情況,從兩班各抽出10名學(xué)生進行數(shù)學(xué)水平測試,成績?nèi)缦?單位:分):
甲班:82 84 85 89 79 80 91 89 79 74
乙班:90 76 86 81 84 87 86 82 85 83
(1)求兩個樣本的平均數(shù);
(2)求兩個樣本的方差和標(biāo)準(zhǔn)差;
(3)試分析比較兩個班的學(xué)習(xí)情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)=ax+(1﹣a)lnx+(a∈R)
(Ⅰ)當(dāng)a=0時,求 f(x)的極值;
(Ⅱ)當(dāng)a<0時,求 f(x)的單調(diào)區(qū)間;
(Ⅲ)方程 f(x)=0的根的個數(shù)能否達到3,若能請求出此時a的范圍,若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機抽取1人抽到喜歡游泳的學(xué)生的概率為.
(1)請將上述列聯(lián)表補充完整;
(2)并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(3)已知在被調(diào)查的學(xué)生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機抽取2人,求恰好有1人喜歡游泳的概率.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間上的最小值是,求的值;
(3)設(shè)是函數(shù)圖象上任意不同的兩點,線段的中點為,直線的斜率為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用電阻值分別為 、、、、、的電阻組裝成一個如圖的組件,在組裝中應(yīng)如何選取電阻,才能使該組件總電阻值最。孔C明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有20張卡片分別寫著數(shù)字1,2,…,19,20,將它們放入一個盒中,有4個人從中各抽取一張卡片,取到兩個較小數(shù)字的二人在同一組,取得兩個較大數(shù)字的二人在同一組,若其中二人分別抽到5和14,則此二人在同一組的概率等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研小組對冬季晝夜溫差大小與某反季節(jié)作物種子發(fā)芽多少之間的關(guān)系進行分析,分別記錄了每天晝夜溫差和每100顆種子的發(fā)芽數(shù),其中5天的數(shù)據(jù)如下,該小組的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,再用方程對其余的2組數(shù)據(jù)進行檢驗.
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
溫度(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 26 | 32 | 26 | 16 |
(1)求余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是第2、3、4天的數(shù)據(jù),求關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與2組檢驗數(shù)據(jù)的誤差均不超過1顆,則認(rèn)為得到的線性回歸方程是可靠的,請問(2)中所得的線性回歸方程是否可靠?
(參考公式;線性回歸方程中系數(shù)計算公式:,,其中、表示樣本的平均值)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com