【題目】自由購是通過自助結(jié)算方式購物的一種形式. 某大型超市為調(diào)查顧客使用自由購的情況,隨機抽取了100人,統(tǒng)計結(jié)果整理如下:

20以下

70以上

使用人數(shù)

3

12

17

6

4

2

0

未使用人數(shù)

0

0

3

14

36

3

0

(Ⅰ)現(xiàn)隨機抽取 1 名顧客,試估計該顧客年齡在且未使用自由購的概率;

(Ⅱ)從被抽取的年齡在使用自由購的顧客中,隨機抽取3人進一步了解情況,用表示這3人中年齡在的人數(shù),求隨機變量的分布列及數(shù)學(xué)期望;

(Ⅲ)為鼓勵顧客使用自由購,該超市擬對使用自由購的顧客贈送1個環(huán)保購物袋.若某日該超市預(yù)計有5000人購物,試估計該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個環(huán)保購物袋.

【答案】;()詳見解析;(2200

【解析】

)隨機抽取的100名顧客中,年齡在[3050)且未使用自由購的有3+1417人,由概率公式即可得到所求值;

所有的可能取值為1,2,3,求出相應(yīng)的概率值,即可得到分布列與期望;

)隨機抽取的100名顧客中,使用自由購的有44人,計算可得所求值.

)在隨機抽取的100名顧客中,年齡在[30,50)且未使用自由購的共有3+14=17人,

所以,隨機抽取1名顧客,估計該顧客年齡在[30,50)且未使用自由購的概率為

所有的可能取值為1,2,3

,

,

.

所以的分布列為

1

2

3

所以的數(shù)學(xué)期望為.

)在隨機抽取的100名顧客中,

使用自由購的共有人,

所以該超市當(dāng)天至少應(yīng)準(zhǔn)備環(huán)保購物袋的個數(shù)估計為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程是,曲線的極坐標(biāo)方程是

1)求直線l和曲線的直角坐標(biāo)方程,曲線的普通方程;

2)若直線l與曲線和曲線在第一象限的交點分別為P,Q,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解甲、乙兩班的數(shù)學(xué)學(xué)習(xí)情況,從兩班各抽出10名學(xué)生進行數(shù)學(xué)水平測試,成績?nèi)缦?單位:分):

甲班:82 84 85 89 79 80 91 89 79 74

乙班:90 76 86 81 84 87 86 82 85 83

(1)求兩個樣本的平均數(shù);

(2)求兩個樣本的方差和標(biāo)準(zhǔn)差;

(3)試分析比較兩個班的學(xué)習(xí)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) fx=ax+1﹣alnx+a∈R

)當(dāng)a=0時,求 fx)的極值;

)當(dāng)a0時,求 fx)的單調(diào)區(qū)間;

)方程 fx=0的根的個數(shù)能否達到3,若能請求出此時a的范圍,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機抽取1人抽到喜歡游泳的學(xué)生的概率為

(1)請將上述列聯(lián)表補充完整;

(2)并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;

(3)已知在被調(diào)查的學(xué)生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機抽取2人,求恰好有1人喜歡游泳的概率.

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)在區(qū)間上的最小值是,求的值;

(3)設(shè)是函數(shù)圖象上任意不同的兩點,線段的中點為,直線的斜率為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用電阻值分別為 、、、、的電阻組裝成一個如圖的組件,在組裝中應(yīng)如何選取電阻,才能使該組件總電阻值最。孔C明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有20張卡片分別寫著數(shù)字1,2,,19,20,將它們放入一個盒中,有4個人從中各抽取一張卡片,取到兩個較小數(shù)字的二人在同一組,取得兩個較大數(shù)字的二人在同一組,若其中二人分別抽到5和14,則此二人在同一組的概率等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研小組對冬季晝夜溫差大小與某反季節(jié)作物種子發(fā)芽多少之間的關(guān)系進行分析,分別記錄了每天晝夜溫差和每100顆種子的發(fā)芽數(shù),其中5天的數(shù)據(jù)如下,該小組的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,再用方程對其余的2組數(shù)據(jù)進行檢驗.

日期

1

2

3

4

5

溫度(℃)

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

26

32

26

16

1)求余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是第2、3、4天的數(shù)據(jù),求關(guān)于的線性回歸方程;

3)若由線性回歸方程得到的估計數(shù)據(jù)與2組檢驗數(shù)據(jù)的誤差均不超過1顆,則認(rèn)為得到的線性回歸方程是可靠的,請問(2)中所得的線性回歸方程是否可靠?

(參考公式;線性回歸方程中系數(shù)計算公式:,,其中、表示樣本的平均值)

查看答案和解析>>

同步練習(xí)冊答案