【題目】某科研小組對(duì)冬季晝夜溫差大小與某反季節(jié)作物種子發(fā)芽多少之間的關(guān)系進(jìn)行分析,分別記錄了每天晝夜溫差和每100顆種子的發(fā)芽數(shù),其中5天的數(shù)據(jù)如下,該小組的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,再用方程對(duì)其余的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

日期

1

2

3

4

5

溫度(℃)

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

26

32

26

16

1)求余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是第2、3、4天的數(shù)據(jù),求關(guān)于的線性回歸方程

3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與2組檢驗(yàn)數(shù)據(jù)的誤差均不超過1顆,則認(rèn)為得到的線性回歸方程是可靠的,請(qǐng)問(2)中所得的線性回歸方程是否可靠?

(參考公式;線性回歸方程中系數(shù)計(jì)算公式:,其中、表示樣本的平均值)

【答案】1;(2;(3)線性回歸方程是可靠的.

【解析】

1)用列舉法求出基本事件數(shù),計(jì)算所求的概率值;

2)由已知數(shù)據(jù)求得,則線性回歸方程可求;

3)利用回歸方程計(jì)算8時(shí)的值,再由已知數(shù)據(jù)作差取絕對(duì)值,與1比較大小得結(jié)論.

解:(1)設(shè)“余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)為事件”,

5組數(shù)據(jù)中選取3組數(shù)據(jù),余下的2組數(shù)據(jù)共10種情況:

,,,,,,

其中事件的有6種,

;

2)由數(shù)據(jù)求得,,

,

代入公式得:,

線性回歸方程為:;

3)當(dāng)時(shí),,,

當(dāng)時(shí),,

故得到的線性回歸方程是可靠的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自由購是通過自助結(jié)算方式購物的一種形式. 某大型超市為調(diào)查顧客使用自由購的情況,隨機(jī)抽取了100人,統(tǒng)計(jì)結(jié)果整理如下:

20以下

70以上

使用人數(shù)

3

12

17

6

4

2

0

未使用人數(shù)

0

0

3

14

36

3

0

(Ⅰ)現(xiàn)隨機(jī)抽取 1 名顧客,試估計(jì)該顧客年齡在且未使用自由購的概率;

(Ⅱ)從被抽取的年齡在使用自由購的顧客中,隨機(jī)抽取3人進(jìn)一步了解情況,用表示這3人中年齡在的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望;

(Ⅲ)為鼓勵(lì)顧客使用自由購,該超市擬對(duì)使用自由購的顧客贈(zèng)送1個(gè)環(huán)保購物袋.若某日該超市預(yù)計(jì)有5000人購物,試估計(jì)該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個(gè)環(huán)保購物袋.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,底面為正三角形,側(cè)棱垂直于底面,.若是棱上的點(diǎn),且,則異面直線所成角的余弦值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),當(dāng)時(shí),曲線上對(duì)應(yīng)的點(diǎn)為.以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(I)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(II)設(shè)曲線的公共點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極值.

(1)求常數(shù)k的值;

(2)求函數(shù)的單調(diào)區(qū)間與極值;

(3)設(shè),且, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓E)過點(diǎn),其心率等于.

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)若AB分別是橢圓E的左,右頂點(diǎn),動(dòng)點(diǎn)M滿足,且橢圓E于點(diǎn)P.

①求證:為定值:

②設(shè)與以為直徑的圓的另一交點(diǎn)為Q,求證:直線經(jīng)過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程是是參數(shù), ),直線的參數(shù)方程是是參數(shù)),曲線與直線有一個(gè)公共點(diǎn)在軸上,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系

(1)求曲線的極坐標(biāo)方程;

(2)若點(diǎn),,在曲線上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某多面體的三視圖如圖所示,則該多面體的各棱中,最長(zhǎng)棱的長(zhǎng)度為( )

A. B. C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市舉辦數(shù)學(xué)知識(shí)競(jìng)賽活動(dòng),共5000名學(xué)生參加,競(jìng)賽分為初試和復(fù)試,復(fù)試環(huán)節(jié)共3道題,其中2道單選題,1道多選題,得分規(guī)則如下:參賽學(xué)生每答對(duì)一道單選題得2分,答錯(cuò)得O分,答對(duì)多選題得3分,答錯(cuò)得0分,答完3道題后的得分之和為參賽學(xué)生的復(fù)試成績(jī).

(1)通過分析可以認(rèn)為學(xué)生初試成績(jī)服從正態(tài)分布,其中,試估計(jì)初試成績(jī)不低于90分的人數(shù);

(2)已知小強(qiáng)已通過初試,他在復(fù)試中單選題的正答率為,多選題的正答率為,且每道題回答正確與否互不影響.記小強(qiáng)復(fù)試成績(jī)?yōu)?/span>,求的分布列及數(shù)學(xué)期望.

附:,.

查看答案和解析>>

同步練習(xí)冊(cè)答案