【題目】某校從參加高一年級期末考試的學生中抽出40名學生,將其成績(均為整數(shù))分成六段,后畫出如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

1)求第四小組的頻率,并補全頻率分布直方圖;

2)根據(jù)頻率分布直方圖估計這次考試的及格率(60分及以上為及格)和平均分.

【答案】1,直方圖見解析;(2)及格率為,平均分為

【解析】

1)根據(jù)頻率分布直方圖可得除第四小組外各小組頻率,再根據(jù)所有頻率和為1求第4小組的頻率,計算第4小組的對應的矩形的高,補全頻率分布直方圖;

2)計算60分及以上各小組對應頻率和即得及格率,利用組中值計算平均分.

解(1)由頻率分布直方圖可知第1、2、3、56小組的頻率分別為:0.1、0.150.15、0.25、0.05,所以第4小組的頻率為:.

∴在頻率分布直方圖中第4小組的對應的矩形的高為,對應圖形如圖所示:

2考試的及格率即60分及以上的頻率

∴及格率為

又由頻率分布直方圖有平均分為:

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】日,某地援鄂醫(yī)護人員,,,,,,人(其中是隊長)圓滿完成抗擊新冠肺炎疫情任務返回本地,他們受到當?shù)厝罕娕c領(lǐng)導的熱烈歡迎.當?shù)孛襟w為了宣傳他們的優(yōu)秀事跡,讓這名醫(yī)護人員和接見他們的一位領(lǐng)導共人站一排進行拍照,則領(lǐng)導和隊長站在兩端且相鄰,而不相鄰的排法種數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cy2=2px過點P(1,1).過點(0, )作直線l與拋物線C交于不同的兩點M,N,過點Mx軸的垂線分別與直線OPON交于點A,B,其中O為原點.

(Ⅰ)求拋物線C的方程,并求其焦點坐標和準線方程;

(Ⅱ)求證:A為線段BM的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)若內(nèi)單調(diào)遞減,求實數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個極值點分別為,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的四個頂點圍成的四邊形的面積為,其離心率為

(1)求橢圓的方程;

(2)過橢圓的右焦點作直線軸除外)與橢圓交于不同的兩點,,在軸上是否存在定點,使為定值?若存在,求出定點坐標及定值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的最大值為.

(Ⅰ)求實數(shù)的值;

(Ⅱ)當時,討論函數(shù)的單調(diào)性;

(Ⅲ)當時,令,是否存在區(qū)間.使得函數(shù)在區(qū)間上的值域為若存在,求實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象關(guān)于原點對稱,其中為常數(shù).

1)求的值;

2)當時, 恒成立,求實數(shù)的取值范圍;

3若關(guān)于的方程上有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為2的正方體中,M是線段AB上的動點.

證明:平面

若點MAB中點,求二面角的余弦值;

判斷點M到平面的距離是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

(1)當時,求曲線在點處的切線方程;

(2)求函數(shù)f(x)的極值.

查看答案和解析>>

同步練習冊答案