【題目】已知f(x)=,x∈(-2,2).

(1) 判斷f(x)的奇偶性并說(shuō)明理由;

(2) 求證:函數(shù)f(x)在(-2,2)上是增函數(shù);

(3) 若f(2+a)+f(1-2a)>0,求實(shí)數(shù)a的取值范圍.

【答案】(1) 見(jiàn)解析:(2) 見(jiàn)解析:(3) a∈.

【解析】試題分析:(1)定義域 關(guān)于原點(diǎn)對(duì)稱,同時(shí)滿足f(x)=-f(-2),所以是奇函數(shù)。(2)由定義法證明函數(shù)的單調(diào)性,按假設(shè),作差,變形,判斷,下結(jié)論過(guò)程完成。(3)由奇函數(shù),原不等式變形為f(2+a)>-f(1-2a)=f(2a-1),再由函數(shù)單調(diào)性及定義域可知,解不等式組可解。

試題解析:(1) 解:∵ f(-x)==-=-f(x),∴ f(x)是奇函數(shù).

(2) 證明:設(shè)x1,x2為區(qū)間(-2,2)上的任意兩個(gè)值,且x1<x2,則f(x1)-f(x2)=

,

因?yàn)椋?/span>2<x1<x2<2,所以x2-x1>0,x1x2-4<0,所以f(x1)-f(x2)<0,f(x1)<f(x2),

所以函數(shù)f(x)(-2,2)上是增函數(shù).

(3) 解:因?yàn)?/span>f(x)為奇函數(shù),所以由f(2+a)+f(1-2a)>0得,f(2+a)>-f(1-2a)=f(2a-1),

因?yàn)楹瘮?shù)f(x)(-2,2)上是增函數(shù),

所以

a∈.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年1月1日起全國(guó)統(tǒng)一實(shí)施全面兩孩政策.為了解適齡民眾對(duì)放開(kāi)生育二胎政策的態(tài)度,某市選取70后和80后作為調(diào)查對(duì)象,隨機(jī)調(diào)查了100位,得到數(shù)據(jù)如表:

生二胎

不生二胎

合計(jì)

70后

30

15

45

80后

45

10

55

合計(jì)

75

25

100


(1)以這100個(gè)人的樣本數(shù)據(jù)估計(jì)該市的總體數(shù)據(jù),且以頻率估計(jì)概率,若從該市70后公民中隨機(jī)抽取3位,記其中生二胎的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(2)根據(jù)調(diào)查數(shù)據(jù),是否有90%以上的把握認(rèn)為“生二胎與年齡有關(guān)”,并說(shuō)明理由.
參考數(shù)據(jù):

P(K2>k)

0.15

0.10

0.05

0.025

0.010

0.005

k

2.072

2.706

3.841

5.024

6.635

7.879

(參考公式: ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).

(1)求證:AF∥平面PEC

(2)求證:平面PCD⊥平面PEC;

(3)求三棱錐C-BEP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某機(jī)器人的運(yùn)動(dòng)軌道是邊長(zhǎng)為1米的正三角形ABC,開(kāi)機(jī)后它從A點(diǎn)出發(fā),沿軌道先逆時(shí)針運(yùn)動(dòng)再順時(shí)針運(yùn)動(dòng),每運(yùn)動(dòng)6米改變一次運(yùn)動(dòng)方向(假設(shè)按此方式無(wú)限運(yùn)動(dòng)下去),運(yùn)動(dòng)過(guò)程中隨時(shí)記錄逆時(shí)針運(yùn)動(dòng)的總路程s1和順時(shí)針運(yùn)動(dòng)的總路程s2x為該機(jī)器人的運(yùn)動(dòng)狀態(tài)參數(shù),規(guī)定:逆時(shí)針運(yùn)動(dòng)時(shí)xs1,順時(shí)針運(yùn)動(dòng)時(shí)x-s2,機(jī)器人到A點(diǎn)的距離dx滿足函數(shù)關(guān)系dfx),現(xiàn)有如下結(jié)論:

fx)的值域?yàn)椋?/span>01];

fx)是以3為周期的函數(shù);

fx)是定義在R上的奇函數(shù);

fx)在區(qū)間[-3,-2]上單調(diào)遞增.

其中正確的有_________(寫出所有正確結(jié)論的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(ex+1)(ax+2a﹣2),若存在x∈(0,+∞),使得不等式f(x)﹣2<0成立,則實(shí)數(shù)a的取值范圍是(
A.(0,1)
B.(0,
C.(﹣∞,1)
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的n項(xiàng)和為Sn , 且a1=a2=1,{nSn+(n+2)an}為等差數(shù)列,則{an}的通項(xiàng)公式an=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示幾何體ABC﹣A1B1C1中,A1、B1、C1在面ABC上的射影分別是線段AB、BC、AC的中點(diǎn),面A1B1C1∥面ABC,△ABC是邊長(zhǎng)為2的等邊三角形.

(1)求證:△A1B1C1是等邊三角形;
(2)若面ACB1A1⊥面BA1B1 , 求該幾何體ABC﹣A1B1C1的體積;
(3)在(2)的條件下,求面ABC與面A1B1B所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:的離心率為,點(diǎn)在橢圓C上.

1求橢圓C的方程;

2設(shè)動(dòng)直線與橢圓C有且僅有一個(gè)公共點(diǎn),判斷是否存在以原點(diǎn)O為圓心的圓,滿足此圓與相交兩點(diǎn),兩點(diǎn)均不在坐標(biāo)軸上,且使得直線, 的斜率之積為定值?若存在,求此圓的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=x﹣ sin2x+asinx在(﹣∞,+∞)單調(diào)遞增,則a的取值范圍是( 。
A.[﹣1,1]
B.[﹣1, ]
C.[﹣ , ]
D.[﹣1,﹣ ]

查看答案和解析>>

同步練習(xí)冊(cè)答案