甲、乙兩位同學(xué)做摸球游戲,游戲規(guī)則規(guī)定:兩人輪流從一個(gè)放有2個(gè)紅球,3個(gè)黃球,1個(gè)白球且顏色不同的6個(gè)小球的暗箱中取球,每次每人只能取一球,每取出1個(gè)后立即放回,另一個(gè)接著再取出后也立即放回,誰先取到紅球,誰為勝者.現(xiàn)甲先取,求甲摸求次數(shù)不超過3次就獲勝的概率.
甲第一次就獲勝的概率,甲第二次獲勝的概率=,
甲第三次獲勝的概率=,故甲摸求次數(shù)不超過3次就獲勝的概率為
.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;
(Ⅱ)若規(guī)定每投藍(lán)一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)某陶瓷廠準(zhǔn)備燒制甲、乙、丙三件不同的工藝品,制作過程必須先后經(jīng)過兩次燒制,當(dāng)?shù)谝淮螣坪细窈蠓娇蛇M(jìn)入第二次燒作,兩次燒制過程相互獨(dú)立,根據(jù)該廠現(xiàn)有的技術(shù)水平,經(jīng)過第一次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.5,0.6,0.4經(jīng)過第二次燒制后,甲、乙、丙三件產(chǎn)品合格的概率依次為0.6,0.5,0.75。
(1)求第一次燒制后恰有一件產(chǎn)品合格的概率;
(2)經(jīng)過前后兩次燒制后,合格工藝品的個(gè)數(shù)為,求隨機(jī)變量的期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
在一次數(shù)學(xué)考試中,共有10道選擇題,每題均有四個(gè)選項(xiàng),其中有且只有一個(gè)選項(xiàng)是正確的,評(píng)分標(biāo)準(zhǔn)規(guī)定:“每道題只選一個(gè)選項(xiàng),答對(duì)得5分,不答或答錯(cuò)得零分”.某考生已確定有6道題是正確的,其余題目中:有兩道題可判斷兩個(gè)選項(xiàng)是錯(cuò)誤的,有一道可判斷一個(gè)選項(xiàng)是錯(cuò)誤的,還有一道因不理解題意只好亂猜,請(qǐng)求出該考生:
(Ⅰ)得50分的概率;
(Ⅱ)設(shè)該考生所得分?jǐn)?shù)為,求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在研究某新措施對(duì)“非典”的防治效果問題時(shí),得到如下列聯(lián)表:
 
存活數(shù)
死亡數(shù)
合計(jì)
新措施
132
18
150
對(duì)照
114
36
150
合計(jì)
246
54
300
由表中數(shù)據(jù)可得,故我們由此認(rèn)為 “新措施對(duì)防治非典有效” 的把握為(  )
A.0            B.        C.       D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

同時(shí)拋三枚骰子,求向上的點(diǎn)數(shù)之和為8,且至少有一枚是一點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將4個(gè)相同的白球和5個(gè)相同的黑球全部放入3個(gè)不同的盒子中,每個(gè)盒子既要有白球,
又要有黑球,且每個(gè)盒子中球數(shù)不能少于2個(gè),則所有不同的放法的種數(shù)為(  )
A.12B.3C.18D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市為響應(yīng)國家節(jié)能減排,建設(shè)資源節(jié)約型社會(huì)的號(hào)召,喚起人們從自己身邊的小事做起,開展了以“再小的力量也是一種支持”為主題的宣傳教育活動(dòng),其中有兩則公益廣告:
(一)80部手機(jī),一年就會(huì)增加一噸二氧化碳的排放!
(二)人們在享受汽車帶來的便捷與舒適的同時(shí),卻不得不呼吸汽車排放的尾氣!


 
       活動(dòng)組織者為了解市民對(duì)這兩則廣告的宣傳效果,隨機(jī)對(duì)10~60歲的人群抽樣了n人,統(tǒng)計(jì)結(jié)果如下圖表:

 
(I)分別寫出n,a,c,d的值;
(II)若以表中的頻率近似看作各年齡組正確回答廣告內(nèi)容的概率,規(guī)定正確回答廣告一的內(nèi)容得20元,廣告二的內(nèi)容得30元。組織者隨機(jī)請(qǐng)一家庭的兩成員(大人45歲,孩子17歲)回答兩廣告內(nèi)容,求該家庭獲得獎(jiǎng)金的期望(各人之間,兩廣告之間,對(duì)能否正確回答,均無影響。)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)于隨機(jī)事件,若,則對(duì)立事件的概率         .

查看答案和解析>>

同步練習(xí)冊答案