已知函數(shù).

(I)當(dāng)a=3時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;

(II)對(duì)任意b>0,f(x)在區(qū)間[b-lnb,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

 

【答案】

(I)  (II)

【解析】

試題分析:(I)時(shí),

所以切線為

(II)時(shí),設(shè)

上是增函數(shù),

恒成立恒成立,

考點(diǎn):導(dǎo)數(shù)的幾何意義及函數(shù)單調(diào)性最值

點(diǎn)評(píng):利用導(dǎo)數(shù)的幾何意義(函數(shù)在某一點(diǎn)處的導(dǎo)數(shù)值等于該點(diǎn)處的切線斜率)通過(guò)導(dǎo)數(shù)可求出直線斜率;第二問(wèn)將單調(diào)性轉(zhuǎn)化為導(dǎo)數(shù)值的正負(fù),進(jìn)而將不等式恒成立轉(zhuǎn)化為求函數(shù)最值,這種不等式與函數(shù)的轉(zhuǎn)化是常考的思路

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)已知函數(shù) (I)求曲線處的切線方程;   (Ⅱ)求證函數(shù)在區(qū)間[0,1]上存在唯一的極值點(diǎn),并用二分法求函數(shù)取得極值時(shí)相應(yīng)x的近似值(誤差不超過(guò)0.2);(參考數(shù)據(jù)e≈2.7,≈1.6,e0.3≈1.3)

   (III)當(dāng)試求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省寧波四中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
( I)當(dāng),求f(x)的值域;
(II)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且c=,f(C)=0,若向量=(1,sinA)與向量=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(I)當(dāng)的單調(diào)區(qū)間;

(II)若函數(shù)的最小值;

(III)若對(duì)任意給定的,使得的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省六校高三上學(xué)期11月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分14分 已知函數(shù)

   (I)化簡(jiǎn)的最小正周期;

   (II)當(dāng)的值域。

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年福建省高二下學(xué)期期末考試(文科)數(shù)學(xué)卷 題型:解答題

(本小題滿分14分)

已知函數(shù)

   (I)若曲線與曲線相交,且在交點(diǎn)處有相同的切線,求a的值及該切線的方程;

   (II)設(shè)函數(shù),當(dāng)h(x)存在最小值時(shí),求其最小值的解析式;

   (III)對(duì)(II)中的,證明:當(dāng)時(shí),

 

查看答案和解析>>

同步練習(xí)冊(cè)答案