【題目】已知函數(shù).

1)若函數(shù)的極小值為1,求實(shí)數(shù)m的值;

2)若函數(shù)時(shí),其圖象全部都在第一象限,求實(shí)數(shù)m的取值范圍.

【答案】1.2

【解析】

1)求導(dǎo)得到,討論兩種情況,根據(jù)單調(diào)區(qū)間計(jì)算極值得到答案.

2)題目等價(jià)于時(shí),恒成立,構(gòu)造函數(shù),求導(dǎo),計(jì)算導(dǎo)函數(shù)的導(dǎo)數(shù),討論兩種情況,根據(jù)函數(shù)的單調(diào)性計(jì)算最值得到答案.

1,,

①若,則R上恒成立,

單調(diào)遞增,所以無(wú)極值;

②若,當(dāng)時(shí),,當(dāng)時(shí),,

單調(diào)遞減,在單調(diào)遞增,

所以的極小值為,由,解得.

綜上所述:.

2,函數(shù)圖像全部在第一象限,等價(jià)于時(shí),恒成立,

,

,,令,

顯然單調(diào)遞增,∴.

當(dāng)時(shí),,所以,∴單調(diào)遞增,

,即,∴單調(diào)遞增,

所以,此時(shí)符合題意;

當(dāng)時(shí),,∴,使,

恒為負(fù)值,單調(diào)遞減,此時(shí),

所以單調(diào)遞減,所以,此時(shí)不符合題意.

故所求m的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)證明:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù),.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的圾坐標(biāo)方,且直線l與曲線C相交于AB兩點(diǎn).

1)求曲線C的普通方程和l的直角坐標(biāo)方程;

2)若,點(diǎn)滿足,求此時(shí)r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了提高生產(chǎn)效率,對(duì)生產(chǎn)設(shè)備進(jìn)行了技術(shù)改造,為了對(duì)比技術(shù)改造后的效果,采集了技術(shù)改造前后各20次連續(xù)正常運(yùn)行的時(shí)間長(zhǎng)度(單位:天)數(shù)據(jù),整理如下:

改造前:19,3122,2634,1522,25,40,35,18,16,2823,34,1526,2024,21

改造后:3229,41,18,2633,4234,3739,3322,42,3543,27,4137,38,36

1)完成下面的列聯(lián)表,并判斷能否有99%的把握認(rèn)為技術(shù)改造前后的連續(xù)正常運(yùn)行時(shí)間有差異?

超過30

不超過30

改造前

改造后

2)工廠的生產(chǎn)設(shè)備的運(yùn)行需要進(jìn)行維護(hù),工廠對(duì)生產(chǎn)設(shè)備的生產(chǎn)維護(hù)費(fèi)用包括正常維護(hù)費(fèi),保障維護(hù)費(fèi)兩種.對(duì)生產(chǎn)設(shè)備設(shè)定維護(hù)周期為T(即從開工運(yùn)行到第kT天,k∈N*)進(jìn)行維護(hù).生產(chǎn)設(shè)備在一個(gè)生產(chǎn)周期內(nèi)設(shè)置幾個(gè)維護(hù)周期,每個(gè)維護(hù)周期相互獨(dú)立.在一個(gè)維護(hù)周期內(nèi),若生產(chǎn)設(shè)備能連續(xù)運(yùn)行,則只產(chǎn)生一次正常維護(hù)費(fèi),而不會(huì)產(chǎn)生保障維護(hù)費(fèi);若生產(chǎn)設(shè)備不能連續(xù)運(yùn)行,則除產(chǎn)生一次正常維護(hù)費(fèi)外,還產(chǎn)生保障維護(hù)費(fèi).經(jīng)測(cè)算,正常維護(hù)費(fèi)為0.5萬(wàn)元/次;保障維護(hù)費(fèi)第一次為0.2萬(wàn)元/周期,此后每增加一次則保障維護(hù)費(fèi)增加0.2萬(wàn)元.現(xiàn)制定生產(chǎn)設(shè)備一個(gè)生產(chǎn)周期(120天計(jì))內(nèi)的維護(hù)方案:T=30,k=1,2,34.以生產(chǎn)設(shè)備在技術(shù)改造后一個(gè)維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,求一個(gè)生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的分布列及均值.

附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每到春夏交替時(shí)節(jié),雌性楊樹會(huì)以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們?cè)斐衫_,為了解市民對(duì)治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)査了部分市民(問卷調(diào)査表如下表所示),并根據(jù)調(diào)查結(jié)果繪制了尚不完整的統(tǒng)計(jì)圖表(如下圖)

由兩個(gè)統(tǒng)計(jì)圖表可以求得,選擇D選項(xiàng)的人數(shù)和扇形統(tǒng)計(jì)圖中E的圓心角度數(shù)分別為(

A.50028.8°B.25028.6°C.500,28.6°D.25028.8°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)過點(diǎn),離心率為.其左、右焦點(diǎn)分別為,O為坐標(biāo)原點(diǎn).直線l與以線段為直徑的圓相切,且直線l與橢圓C交于不同的AB兩點(diǎn).

1)求橢圓C的方程;

2)若滿足,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C方程為,橢圓中心在原點(diǎn),焦點(diǎn)在x軸上.

1)證明圓C恒過一定點(diǎn)M,并求此定點(diǎn)M的坐標(biāo);

2)判斷直線與圓C的位置關(guān)系,并證明你的結(jié)論;

3)當(dāng)時(shí),圓C與橢圓的左準(zhǔn)線相切,且橢圓過(1)中的點(diǎn)M,求此時(shí)橢圓方程;在x軸上是否存在兩定點(diǎn)A,B使得對(duì)橢圓上任意一點(diǎn)Q(異于長(zhǎng)軸端點(diǎn)),直線,的斜率之積為定值?若存在,求出A,B坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國(guó)際上通常用年齡中位數(shù)指標(biāo)作為劃分國(guó)家或地區(qū)人口年齡構(gòu)成的標(biāo)準(zhǔn):年齡中位數(shù)在20歲以下為年輕型人口;年齡中位數(shù)在2030歲為成年型人口;年齡中位數(shù)在30歲以上為老齡型人口.

如圖反映了我國(guó)全面放開二孩政策對(duì)我國(guó)人口年齡中位數(shù)的影響.據(jù)此,對(duì)我國(guó)人口年齡構(gòu)成的類型做出如下判斷:①建國(guó)以來直至2000年為成年型人口;②從2010年至2020年為老齡型人口;③放開二孩政策之后我國(guó)仍為老齡型人口.其中正確的是(

A.②③B.①③C.D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)質(zhì)量檢驗(yàn)員為了檢測(cè)生產(chǎn)線上零件的情況,從生產(chǎn)線上隨機(jī)抽取了個(gè)零件進(jìn)行測(cè)量,根據(jù)所測(cè)量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:

1)根據(jù)頻率分布直方圖,求這個(gè)零件尺寸的中位數(shù)(結(jié)果精確到);

2)已知尺寸在上的零件為一等品,否則為二等品. 將這個(gè)零件尺寸的樣本頻率視為概率,從生產(chǎn)線上隨機(jī)抽取個(gè)零件,試估計(jì)所抽取的零件是二等品的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案