【題目】已知圓C方程為,橢圓中心在原點(diǎn),焦點(diǎn)在x軸上.

1)證明圓C恒過(guò)一定點(diǎn)M,并求此定點(diǎn)M的坐標(biāo);

2)判斷直線與圓C的位置關(guān)系,并證明你的結(jié)論;

3)當(dāng)時(shí),圓C與橢圓的左準(zhǔn)線相切,且橢圓過(guò)(1)中的點(diǎn)M,求此時(shí)橢圓方程;在x軸上是否存在兩定點(diǎn)A,B使得對(duì)橢圓上任意一點(diǎn)Q(異于長(zhǎng)軸端點(diǎn)),直線,的斜率之積為定值?若存在,求出A,B坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1)證明見(jiàn)解析;定點(diǎn)2)直線與圓C相切;證明見(jiàn)解析;(3)存在;,或者

【解析】

1)根據(jù)題意得到,解得答案.

2)將圓化為標(biāo)準(zhǔn)形式,計(jì)算圓心到直線的距離與半徑作比較得到答案.

3)根據(jù)準(zhǔn)線和橢圓過(guò)點(diǎn)計(jì)算得到,得到橢圓方程,設(shè)定點(diǎn),,計(jì)算為定值,得到,計(jì)算得到答案.

1)圓C的方程可化為:,

,解得,所以圓C過(guò)定點(diǎn).

2)圓C的方程可化為:,

圓心到直線l的距離為

所以直線與圓C相切.

3)當(dāng)時(shí),圓C方程為,圓心為,半徑為10

與直線,即相切,所以橢圓的左準(zhǔn)線為,

又橢圓過(guò)點(diǎn),則,所以,解得,

所以橢圓方程為.

在橢圓上任取一點(diǎn)),設(shè)定點(diǎn),

對(duì)恒成立,

所以對(duì)恒成立,

所以,故,

所以,或者,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線y2=4x的焦點(diǎn)的直線l與拋物線交于A,B兩點(diǎn),設(shè)點(diǎn)M30.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)g(x)=sinωx(ω0)向左平移個(gè)單位長(zhǎng)度得到函數(shù)f(x),已知f(x)[0,2π]上有且只有5個(gè)零點(diǎn),則下列結(jié)論正確的是(

A.f(x)的圖象關(guān)于直線對(duì)稱(chēng)

B.f(x)(0,2π)上有且只有3個(gè)極大值點(diǎn),f(x)(0,2π)上有且只有2個(gè)極小值點(diǎn)

C.f(x)上單調(diào)遞增

D.ω的取值范圍是[)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的極小值為1,求實(shí)數(shù)m的值;

2)若函數(shù)時(shí),其圖象全部都在第一象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,直線的參數(shù)方程為t為參數(shù)),,點(diǎn)A為直線與曲線C在第二象限的交點(diǎn),過(guò)O點(diǎn)的直線與直線互相垂直,點(diǎn)B為直線與曲線C在第三象限的交點(diǎn).

1)寫(xiě)出曲線C的直角坐標(biāo)方程及直線的普通方程;

2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《周易》是我國(guó)古代典籍,用描述了天地世間萬(wàn)象變化.如圖是一個(gè)八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個(gè)爻組成,其中表示一個(gè)陽(yáng)爻,表示一個(gè)陰爻).若從八卦中任取兩卦,這兩卦的六個(gè)爻中恰有一個(gè)陽(yáng)爻的概率為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高生產(chǎn)線的運(yùn)行效率,工廠對(duì)生產(chǎn)線的設(shè)備進(jìn)行了技術(shù)改造.為了對(duì)比技術(shù)改造后的效果,采集了生產(chǎn)線的技術(shù)改造前后各20次連續(xù)正常運(yùn)行的時(shí)間長(zhǎng)度(單位:天)數(shù)據(jù),并繪制了如莖葉圖:

1)(i)設(shè)所采集的40個(gè)連續(xù)正常運(yùn)行時(shí)間的中位數(shù)m,并將連續(xù)正常運(yùn)行時(shí)間超過(guò)m和不超過(guò)m的次數(shù)填入下面的列聯(lián)表:

超過(guò)

不超過(guò)

改造前

改造后

ii)根據(jù)(i)中的列聯(lián)表,能否有99%的把握認(rèn)為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運(yùn)行時(shí)間有差異?

附:

0.050

0.010

0.001

3.841

6.635

10.828

2)工廠的生產(chǎn)線的運(yùn)行需要進(jìn)行維護(hù),工廠對(duì)生產(chǎn)線的生產(chǎn)維護(hù)費(fèi)用包括正常維護(hù)費(fèi)、保障維護(hù)費(fèi)兩種.對(duì)生產(chǎn)線設(shè)定維護(hù)周期為T天(即從開(kāi)工運(yùn)行到第kT進(jìn)行維護(hù).生產(chǎn)線在一個(gè)生產(chǎn)周期內(nèi)設(shè)置幾個(gè)維護(hù)周期,每個(gè)維護(hù)周期相互獨(dú)立.在一個(gè)維護(hù)周期內(nèi),若生產(chǎn)線能連續(xù)運(yùn)行,則不會(huì)產(chǎn)生保障維護(hù)費(fèi);若生產(chǎn)線不能連續(xù)運(yùn)行,則產(chǎn)生保障維護(hù)費(fèi).經(jīng)測(cè)算,正常維護(hù)費(fèi)為0.5萬(wàn)元/次;保障維護(hù)費(fèi)第一次為0.2萬(wàn)元/周期,此后每增加一次則保障維護(hù)費(fèi)增加0.2萬(wàn)元.現(xiàn)制定生產(chǎn)線一個(gè)生產(chǎn)周期(以120天計(jì))內(nèi)的維護(hù)方案:,.以生產(chǎn)線在技術(shù)改造后一個(gè)維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,求一個(gè)生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019新型冠狀病毒感染的肺炎的傳播有飛沫、氣溶膠、接觸等途徑,為了有效抗擊疫情,隔離性防護(hù)是一項(xiàng)具體有效措施.某市為有效防護(hù)疫情,宣傳居民盡可能不外出,鼓勵(lì)居民的生活必需品可在網(wǎng)上下單,商品由快遞業(yè)務(wù)公司統(tǒng)一配送(配送費(fèi)由政府補(bǔ)貼).快遞業(yè)務(wù)主要由甲公司與乙公司兩家快遞公司承接:“快遞員”的工資是“底薪+送件提成”.這兩家公司對(duì)“快遞員”的日工資方案為:甲公司規(guī)定快遞員每天底薪為70元,每送件一次提成1元;乙公司規(guī)定快遞員每天底薪為120元,每日前83件沒(méi)有提成,超過(guò)83件部分每件提成5元,假設(shè)同一公司的快遞員每天送件數(shù)相同,現(xiàn)從這兩家公司往年忙季各隨機(jī)抽取一名快遞員并調(diào)取其100天的送件數(shù),得到如下條形圖:

1)求乙公司的快遞員一日工資y(單位:元)與送件數(shù)n的函數(shù)關(guān)系;

2)若將頻率視為概率,回答下列問(wèn)題:

①記甲公司的“快遞員”日工資為X(單位:元).求X的分布列和數(shù)學(xué)期望;

②小王想到這兩家公司中的一家應(yīng)聘“快遞員”的工作,如果僅從日收入的角度考慮,請(qǐng)你利用所學(xué)過(guò)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】歷史上有不少數(shù)學(xué)家都對(duì)圓周率作過(guò)研究,第一個(gè)用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長(zhǎng)確定圓周長(zhǎng)的上下界,開(kāi)創(chuàng)了圓周率計(jì)算的幾何方法,而中國(guó)數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱(chēng)為割圓術(shù).近代無(wú)窮乘積式、無(wú)窮連分?jǐn)?shù)、無(wú)窮級(jí)數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計(jì)算精度也迅速增加.華理斯在1655年求出一個(gè)公式:,根據(jù)該公式繪制出了估計(jì)圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案