如圖是計算t=12×22×…×i2的程序,程序中循環(huán)體執(zhí)行的次數(shù)為(  )
A、3B、4C、5D、6
考點:偽代碼
專題:算法和程序框圖
分析:執(zhí)行程序依次寫出每次循環(huán)得到的i,t的值,當(dāng)t=576時第4次執(zhí)行循環(huán)體,滿足條件t>100,退出執(zhí)行循環(huán)體.
解答: 解:執(zhí)行程序,有
i=0,t=1
第1次執(zhí)行循環(huán)體,i=1,t=1
第2次執(zhí)行循環(huán)體,i=2,t=4
第3次執(zhí)行循環(huán)體,i=3,t=4×9=36
第4次執(zhí)行循環(huán)體,i=4,t=36×16=576
滿足條件t>100,退出執(zhí)行循環(huán)體,輸出t的值
故選:B.
點評:本題主要考察了程序框圖和偽代碼,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,已知側(cè)面PAD為等腰直角三角形,底面ABCD為直角梯形,AB∥CD,∠ABC=∠APD=90°,側(cè)面PAD⊥底面ABCD,且AB=4,AP=PD=BC=CD=2.
(1)求證:PA⊥BD;
(2)若E為側(cè)棱PB的中點,求直線AE與底面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線
x2
9
-
y2
b2
=1(b>0)左焦點F1的直線l與雙曲線左支交于A,B兩點,若|AF2|+|BF2|(F2是雙曲線的右焦點)的最小值為14,則b的值是   ( 。
A、1
B、
2
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),F(xiàn)為左焦點,A為左頂點,B為上頂點,C為下頂點,且
AB
CF
=0,則橢圓的離心率為( 。
A、
2
-1
2
B、
3
-1
2
C、
5
-1
2
D、
6
-1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,sin2A≤sin2B+sin2C-sin B•sin C,則A的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-bx+1.
(Ⅰ)若f(x+1)-f(x)=2x,求a,b的值;
(Ⅱ)若b=a+2,且f(x)在(-2,-l)內(nèi)恰有-個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(1-x)+loga(x+3),其中a>0且a≠1.
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)求函數(shù)f(x)的零點;
(Ⅲ)若函數(shù)f(x)的最大值為2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了研究高中學(xué)生對鄉(xiāng)村音樂的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關(guān)系,運用2×2列聯(lián)表進(jìn)行獨立性檢驗,經(jīng)計算K2=8.01,則認(rèn)為“喜歡鄉(xiāng)村音樂與性別有關(guān)系”的把握性約為( 。
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
A、0.1%B、1%
C、99%D、99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg(x-2)的定義域為A,函數(shù)g(x)=x
1
2
,x∈[0,9]的值域為B.
(1)求A∩B,(∁RB)∪A;
(2)若C={x|x≥2m-1},且(A∩B)⊆C,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案