【題目】2019年某地初中畢業(yè)升學(xué)體育考試規(guī)定:考生必須參加長跑.擲實(shí)心球.1分鐘跳繩三項(xiàng)測試,三項(xiàng)測試各項(xiàng)20分,滿分60分.某學(xué)校在初三上學(xué)期開始時(shí),為掌握全年級學(xué)生1分鐘跳繩情況,按照男女比例利用分層抽樣抽取了100名學(xué)生進(jìn)行測試,其中女生54人,得到下面的頻率分布直方圖,計(jì)分規(guī)則如表1:
(1)規(guī)定:學(xué)生1分鐘跳繩得分20分為優(yōu)秀,在抽取的100名學(xué)生中,男生跳繩個數(shù)大等于185個的有28人,根據(jù)已知條件完成表2,并根據(jù)這100名學(xué)生測試成績,能否有99%的把握認(rèn)為學(xué)生1分鐘跳繩成績優(yōu)秀與性別有關(guān)?
附:參考公式
臨界值表:
(2)根據(jù)往年經(jīng)驗(yàn),該校初三年級學(xué)生經(jīng)過一年的訓(xùn)練,正式測試時(shí)每人每分鐘跳繩個數(shù)都有明顯進(jìn)步.假設(shè)今年正式測試時(shí)每人每分鐘跳繩個數(shù)比初三上學(xué)期開始時(shí)個數(shù)增加10個,全年級恰有2000名學(xué)生,所有學(xué)生的跳繩個數(shù)X服從正態(tài)分布N(μ,σ2)(用樣本數(shù)據(jù)的平值和方差估計(jì)總體的期望和方差,各組數(shù)據(jù)用中點(diǎn)值代替)
①估計(jì)正式測試時(shí),1分鐘跳182個以上的人數(shù)(結(jié)果四舍五入到整數(shù));
②若在全年級所有學(xué)生中任意選取3人,正式測試時(shí)1分鐘跳195個以上的人數(shù)為ξ,求ξ占的分布列及期望.
【答案】(1)不能有的把握認(rèn)為認(rèn)為學(xué)生1分鐘跳繩成績優(yōu)秀與性別有關(guān);(2)①,②分布列見解析,期望值為.
【解析】
(1)根據(jù)題目所給數(shù)據(jù)填寫好聯(lián)表,通過計(jì)算出,由此判斷不能有99%的把握認(rèn)為認(rèn)為學(xué)生分鐘跳繩成績優(yōu)秀與性別有關(guān).(2)根據(jù)頻率分布計(jì)算出平均數(shù)和方差,由此求得正態(tài)分布,計(jì)算出的概率,進(jìn)而估計(jì)出個以上的人數(shù).利用二項(xiàng)分布概率計(jì)算公式計(jì)算出概率,由此求得分布列和數(shù)學(xué)期望.
(1)表2如下圖所示:
由公式可得
因?yàn)?/span>
所以不能有99%的把握認(rèn)為認(rèn)為學(xué)生1分鐘跳繩成績優(yōu)秀與性別有關(guān).
(2)①
而,故服從正態(tài)分布
,
故正式測試時(shí),1分鐘跳182個以上的人數(shù)約為1683人.
②,服從
的分布列為:
0 | 1 | 2 | 3 | |
P |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等腰梯形ABCD如圖3所示,其中AB=8,BC=4,CD=4,線段CD上有一個動點(diǎn)E,若則________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是 (為參數(shù)).
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線與曲線相交于兩點(diǎn),且,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】畫出函數(shù)f(x)=-x2+2x+3的圖像,并根據(jù)圖像回答下列問題:
(1)比較f(0)、f(1)、f(3)的大小;
(2)若x1<x2<1,比較f(x1)與f(x2)的大。
(3)求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】湖南省某自來水公司每個月(記為一個收費(fèi)周期)對用戶收一次水費(fèi),收費(fèi)標(biāo)準(zhǔn)如下:當(dāng)每戶用水量不超過30噸時(shí),按每噸2元收;當(dāng)該用戶用水量超過30噸但不超過50噸時(shí),超出部分按每噸3元收。划(dāng)該用戶用水量超過50噸時(shí),超出部分按每噸4元收取。
(1)記某用戶在一個收費(fèi)周期的用水量為噸,所繳水費(fèi)為元,寫出關(guān)于的函數(shù)解析式;
(2)在某一個收費(fèi)周期內(nèi),若甲、乙兩用戶所繳水費(fèi)的和為214元,且甲、乙兩用戶用水量之比為3:2,試求出甲、乙兩用戶在該收費(fèi)周期內(nèi)各自的用水量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下命題:
①雙曲線的漸近線方程為y=±x;
②命題p:“x∈R,sinx+≥2”是真命題;
③已知線性回歸方程為=3+2x,當(dāng)變量x增加2個單位,其預(yù)報(bào)值平均增加4個單位;
④設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=0.2,則P(-1<ξ<0)=0.6;
⑤設(shè),則
則正確命題的序號為________(寫出所有正確命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線的左、右焦點(diǎn)分別為、,直線過且與雙曲線交于、兩點(diǎn).
(1)若的傾斜角為,,是等腰直角三角形,求雙曲線的標(biāo)準(zhǔn)方程;
(2),,若的斜率存在,且,求的斜率;
(3)證明:點(diǎn)到已知雙曲線的兩條漸近線的距離的乘積為定值是該點(diǎn)在已知雙曲線上的必要非充分條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且)是定義在上的奇函數(shù).
(1)求的值;
(2)求函數(shù)的值域;
(3)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com