【題目】已知函數(shù),,.

1)求函數(shù)的單調(diào)增區(qū)間;

2)令,且函數(shù)有三個彼此不相等的零點0,m,n,其中.

①若,求函數(shù)處的切線方程;

②若對,恒成立,求實數(shù)t的去取值范圍.

【答案】(1)單調(diào)增區(qū)間是,;(2)①,②

【解析】

1)先求得函數(shù),對函數(shù)求導,令大于零,解不等式即可求得單調(diào)增區(qū)間;
2)易知,,①求出,的值,進而求得切線方程;②由對,恒成立,可得,分兩種情況討論,從而可求得的取值范圍.

1)∵,

,令,得.

的單調(diào)增區(qū)間是.

2)由方程,得mn是方程的兩實根,故,且由判別式得.

①若,得,,故,得,

因此,故函數(shù)處的切線方程為.

②若對任意的,都有成立,所以.

因為,,所以.

時,對,所以,解得.又因為,得,則有;

時,,則存在的極大值點,且.

由題意得,將代入得進而得到,得.

又因為,得.

綜上可知t的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為橢圓的右焦點,C的準線與E交于PQ兩點,且

1)求E的方程;

2)過E的左頂點A作直線lE于另一點B,且BOO為坐標原點)的延長線交E于點M,若直線AM的斜率為1,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=exx+12,令f1x)=f'(x),fn+1x)=fn'(x),若fnx)=exanx2+bnx+cn),記數(shù)列{}的前n項和為Sn,則下列選項中與S2019的值最接近的是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,所在平面互相垂直,且,分別為的中點.

(1)求證:;

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為

(1)求橢圓的方程;

(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在新高考改革中,打破了文理分科的模式,不少省份采用了,,等模式.其中模式的操作又更受歡迎,即語數(shù)外三門為必考科目,然后在物理和歷史中選考一門,最后從剩余的四門中選考兩門.某校為了了解學生的選科情況,從高二年級的2000名學生(其中男生1100人,女生900人)中,采用分層抽樣的方法從中抽取n名學生進行調(diào)查.

1)已知抽取的n名學生中含男生110人,求n的值及抽取到的女生人數(shù);

2)在(1)的情況下對抽取到的n名同學選物理選歷史進行問卷調(diào)查,得到下列2×2列聯(lián)表.請將列聯(lián)表補充完整,并判斷是否有99%的把握認為選科目與性別有關?

選物理

選歷史

合計

男生

90

女生

30

合計

3)在(2)的條件下,從抽取的選歷史的學生中按性別分層抽樣再抽取5名,再從這5名學生中抽取2人了解選政治、地理、化學、生物的情況,求2人至少有1名男生的概率.

參考公式:.

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線E,)的左、右焦點分別為,,已知點為拋物線C的焦點,且到雙曲線E的一條漸近線的距離為,又點P為雙曲線E上一點,滿足.

1)雙曲線的標準方程為______;

2的內(nèi)切圓半徑與外接圓半徑之比為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面四邊形中,E,F,中點,,,將沿對角線折起至,使平面平面,則四面體中,下列結論不正確的是(

A.平面B.異面直線所成的角為90°

C.異面直線所成的角為60°D.直線與平面所成的角為30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:極坐標與參數(shù)方程]

在直角坐標系中,曲線的參數(shù)方程為是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的極坐標方程和曲線的直角坐標方程;

(2)若射線 與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值

查看答案和解析>>

同步練習冊答案