(本小題滿分12分)
已知  
(1)求的值;
(2)當(其中,且為常數(shù))時,是否存在最小值,如果存在求出最小值;如
果不存在,請說明理由;
(3)當時,求滿足不等式的范圍.
(1)=0. (2)時,無最小值.(3) 

試題分析:(1)根據(jù)所求只要判定函數(shù)的奇偶性即可,結(jié)合定義來證明。同時對于底數(shù)a進行分類討論得到最值。
(2)結(jié)合單調(diào)性來得到函數(shù)的不等式,進而求解取值范圍。
解:(1)由得: 所以f(x)的定義域為:(-1,1),

∴f(x)為奇函數(shù),∴=0.
(2)設,

,∴   ∴,
上是減函數(shù),又
時,有最小值,且最小值為
,上是增函數(shù),又
時,無最小值.
(3)由(1)及
,∴上是減函數(shù),
,解得,∴的取值范圍是 
點評:解決該試題的關鍵是通過第一問的結(jié)構(gòu)提示我們選擇判定函數(shù)奇偶性,進而得到求解。同時對于底數(shù)a進行分類討論得到函數(shù)的最值問題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知:函數(shù)y=f (x)的定義域為R,且對于任意的a,b∈R,都有f (a+b)=f (a)+f (b),且當x>0時,f (x)<0恒成立.
證明:(1)函數(shù)y=f (x)是R上的減函數(shù).
(2)函數(shù)y=f (x)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),且。
(1)求函數(shù)的解析式;
(2)用單調(diào)性的定義證明上是增函數(shù);
(3)解不等式

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共12分)水庫的蓄水量隨時間而變化,現(xiàn)用t表示時間,以月為單位,年初為起點,根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關于t的近似函數(shù)關系式為
V(t)=
(Ⅰ)該水庫的蓄水量小于50的時期稱為枯水期.以i-1<t<i表示第i月份(i=1,2,…,12),問一年內(nèi)哪幾個月份是枯水期?
(Ⅱ)求一年內(nèi)該水庫的最大蓄水量(取e=2.7計算).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設A={x|},B={y|1},下列圖形表示集合A到集合B的函數(shù)圖形的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知函數(shù)滿足
(1)求常數(shù)的值;  
(2)求使成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)是R上的增函數(shù),則實數(shù)的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
對于定義域為D的函數(shù),若同時滿足下列條件:①在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[],使在[]上的值域為[];那么把()叫閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間[];
(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)若函數(shù)是閉函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)某公司是專門生產(chǎn)健身產(chǎn)品的企業(yè),第一批產(chǎn)品上市銷售40天內(nèi)全部售完,該公司對第一批產(chǎn)品上市后的市場銷售進行調(diào)研,結(jié)果如圖(1)、(2)所示.其中(1)的拋物線表示的是市場的日銷售量與上市時間的關系;(2)的折線表示的是每件產(chǎn)品的銷售利潤與上市時間的關系.

(1)寫出市場的日銷售量與第一批產(chǎn)品A上市時間t的關系式;
(2)第一批產(chǎn)品A上市后的第幾天,這家公司日銷售利潤最大,最大利潤是多少?

查看答案和解析>>

同步練習冊答案