【題目】某廠生產(chǎn)產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件需另投人成本萬元.當年產(chǎn)量不足80千件時,(萬元);當年產(chǎn)量不小于80千件時,萬元,每千件產(chǎn)品的售價為50萬元,該廠生產(chǎn)的產(chǎn)品能全部售完.

1)寫出年利潤萬元關于千件的函數(shù)關系式;

2)當年產(chǎn)量為多少千件時該廠當年的利潤最大?

【答案】12100

【解析】

1)由于每生產(chǎn)千件需另投人成本受產(chǎn)量的影響有變化,根據(jù)題意,所以分當時和當時,兩種情況進行討論,然后根據(jù)利潤的定義寫出解析式.

2)根據(jù)(1)的利潤函數(shù)為,當時,用二次函數(shù)法求最大值;當時,用基本不等式求最大值.最后兩段中取最大的為利潤函數(shù)的最大值,相應的x的取值即為此時最大利潤時的產(chǎn)量.

1)根據(jù)題意

時, ,

時, ,

綜上: .

2)由(1)知

時, ,

時,的最大值為950.

時, ,

當且僅當時取等號,的最大值為1000.

綜上:當產(chǎn)量為100千件時,該廠當年的利潤最大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求在區(qū)間上的最值;

(2)討論函數(shù)的單調(diào)性;

(3)當時,有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點在冪函數(shù)的圖像上.

1)求的表達式;

2)設,求函數(shù)的零點,推出函數(shù)的另外一個性質(zhì)(只要求寫出結果,不要求證明),并畫出函數(shù)的簡圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C=2px經(jīng)過點(1,2).過點Q(0,1)的直線l與拋物線C有兩個不同的交點A,B,且直線PAy軸于M,直線PBy軸于N

求直線l的斜率的取值范圍;

O為原點,,,求證為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題px∈(-2,1),使等式x2-x-m=0成立,命題q表示橢圓.

1)若命題p為真命題,求實數(shù)m的取值范圍.

2)判斷命題p為真命題是命題q為真命題的什么條件(請用簡要過程說明是充分不必要條件、必要不充分條件充要條件既不充分也不必要條件中的哪一個)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)求與直線3x4y70垂直,且與原點的距離為6的直線方程;

(2)求經(jīng)過直線l12x3y50l27x15y10的交點,且平行于直線x2y30的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖像與x軸有兩個不同的交點,其中一個交點坐標是,且當時,恒有.

1)求不等式的解(用a、c表示);

2)若不等式對所有恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于三次函數(shù),定義的導函數(shù)的導函數(shù),經(jīng)過討論發(fā)現(xiàn)命題:“一定存在實數(shù),使得成立”為真,請你根據(jù)這一結論判斷下列命題:

①一定存在實數(shù),使得成立;②一定存在實數(shù),使得成立;③若,則;④若存在實數(shù),且滿足:,則函數(shù)上一定單調(diào)遞增,所有正確的序號是( )

A. ①② B. ①③ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,(本題不作圖不得分)

(1)求 的最大值和最小值;

(2)求 的取值范圍.

查看答案和解析>>

同步練習冊答案