【題目】已知 ,(本題不作圖不得分)
(1)求 的最大值和最小值;
(2)求 的取值范圍.
【答案】(1)最大值為12,最小值3; (2).
【解析】
(1)由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結(jié)論;(2)的幾何意義表示區(qū)域內(nèi)的點與連接直線的斜率,可得與連接的直線斜率最小,與連接的直線斜率最大,從而可得結(jié)果.
(1)由已知得到平面區(qū)域:z=2x+y變形為y=-2x+z,
當此直線經(jīng)過圖中A時使得直線在y軸的截距最小,z最小,
經(jīng)過圖中B時在y軸的截距最大,z 最大,A(1,1),B(5,2),
所以z=2x+y的最大值為2×5+2=12,最小值2×1+1=3;
(2)的幾何意義表示區(qū)域內(nèi)的點與(-1,-1)連接直線的斜率,
所以與B連接的直線斜率最小,與C連接的直線斜率最大,
所以的最小值為,最大值為
所以 的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M過C(1,-1),D(-1,1)兩點,且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設點P是直線3x+4y+8=0上的動點,PA,PB是圓M的兩條切線,A,B為切點,求四邊形PAMB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線C: (a>0,b>0)的離心率為2,右頂點為(1,0).
(1)求雙曲線C的方程;
(2)設直線y=-x+m與y軸交于點P,與雙曲線C的左、右支分別交于點Q,R,且=2,求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設直線與橢圓交于,兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-5:不等式選講
已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】霧霾大氣嚴重影響人們的生活,某科技公司擬投資開發(fā)新型節(jié)能環(huán)保產(chǎn)品,策劃部制定投資計劃時,不僅要考慮可能獲得的盈利,而且還要考慮可能出現(xiàn)的虧損,經(jīng)過市場調(diào)查,公司打算投資甲、乙兩個項目,根據(jù)預測,甲、乙項目可能的最大盈利率分別為和,可能的最大虧損率分別為和,投資人計劃投資金額不超過9萬元,要求確保可能的資金虧損不超過萬元.
Ⅰ若投資人用x萬元投資甲項目,y萬元投資乙項目,試寫出x,y所滿足的條件,并在直角坐標系內(nèi)作出表示x,y范圍的圖形.
Ⅱ根據(jù)的規(guī)劃,投資公司對甲、乙兩個項目分別投資多少萬元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點.
(1)求橢圓的方程;
(2)設橢圓與軸的非負半軸交于點,過點作互相垂直的兩條直線,分別交橢圓于兩點,連接,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形,且, ,平面平面, .
()求證: 平面.
()若二面角為直二面角,
(i)求直線與平面所成角的大。
(ii)棱上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 通項公式為 .
(Ⅰ)計算f(1),f(2),f(3)的值;
(Ⅱ)比較f(n)與1的大小,并用數(shù)學歸納法證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com