如圖所示,AB是⊙O的直徑,G為AB延長(zhǎng)線(xiàn)上的一點(diǎn),GCD是⊙O的割線(xiàn),過(guò)點(diǎn)G作AB的垂線(xiàn),交AC的延長(zhǎng)線(xiàn)于點(diǎn)E,交AD的延長(zhǎng)線(xiàn)于點(diǎn)F,過(guò)G作⊙O的切線(xiàn),切
點(diǎn)為H.求證:(1)C,D,F(xiàn),E四點(diǎn)共圓;
(2)GH2=GE·GF.
(1)連接BC.∵AB是⊙O的直徑,

∴∠ACB=90°.
∵AG⊥FG,∴∠AGE=90°.
又∠EAG=∠BAC,
∴∠ABC=∠AEG.
又∠FDC=∠ABC,
∴∠FDC=∠AEG.
∴∠FDC+∠CEF=180°.
∴C,D,F(xiàn),E四點(diǎn)共圓.                                                     7分
(2)∵GH為⊙O的切線(xiàn),GCD為割線(xiàn),
∴GH2=GC·GD.
由C,D,F(xiàn),E四點(diǎn)共圓,
得∠GCE=∠AFE,∠GEC=∠GDF.
∴△GCE∽△GFD.∴=
即GC·GD=GE·GF.
∴CH2=GE·GF.        
(1)連接BC.∵AB是⊙O的直徑,

∴∠ACB=90°.
∵AG⊥FG,∴∠AGE=90°.
又∠EAG=∠BAC,
∴∠ABC=∠AEG.
又∠FDC=∠ABC,
∴∠FDC=∠AEG.
∴∠FDC+∠CEF=180°.
∴C,D,F(xiàn),E四點(diǎn)共圓.                                                     7分
(2)∵GH為⊙O的切線(xiàn),GCD為割線(xiàn),
∴GH2=GC·GD.
由C,D,F(xiàn),E四點(diǎn)共圓,
得∠GCE=∠AFE,∠GEC=∠GDF.
∴△GCE∽△GFD.∴=,
即GC·GD=GE·GF.
∴CH2=GE·GF.                                                            14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)定點(diǎn),動(dòng)點(diǎn)在圓上運(yùn)動(dòng),以,為兩邊作平行四邊形,求點(diǎn)的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求與x軸相切,圓心在直線(xiàn)3x-y=0上,且被直線(xiàn)x-y=0所截弦長(zhǎng)為27的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖所示,△ABC內(nèi)接于⊙O,過(guò)點(diǎn)A的切線(xiàn)交BC,的延長(zhǎng)線(xiàn)于點(diǎn)P,D為AB的中點(diǎn),DP交AC于M.求證:=.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求通過(guò)原點(diǎn)且與兩直線(xiàn)l1:x+2y-9=0,l2:2xy+2=0相切的圓的  方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

y軸相切,且和半圓x2+y2=4(0≤x≤2)相內(nèi)切的動(dòng)圓圓心P的軌跡方程是
A.y2=4(x-1)(0<x≤1)B.y2=-4(x-1)(0<x≤1)
C.y2=4(x+1)(0<x≤1)D.y2=-2(x-1)(0<x≤1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求以相交兩圓的公共弦為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

圓心在直線(xiàn)上的圓軸交于兩點(diǎn),則圓的方程為              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若圓經(jīng)過(guò)點(diǎn),求這個(gè)圓的方程

查看答案和解析>>

同步練習(xí)冊(cè)答案