【題目】“綠水青山就是金山銀山”的理念越來越深入人心,據(jù)此,某網(wǎng)站調(diào)查了人們對生態(tài)文明建設(shè)的關(guān)注情況,調(diào)查數(shù)據(jù)表明,參與調(diào)查的人員中關(guān)注生態(tài)文明建設(shè)的約占80%.現(xiàn)從參與調(diào)查的關(guān)注生態(tài)文明建設(shè)的人員中隨機選出200人,并將這200人按年齡(單位:歲)分組:第1組[15,25),第2組[25,35),第3組[35,45),第4組[45,55),第5組[55,65],得到的頻率分布直方圖如圖所示.
(Ⅰ)求這200人的平均年齡(每一組用該組區(qū)間的中點值作為代表)和年齡的中位數(shù)(保留一位小數(shù));
(Ⅱ)現(xiàn)在要從年齡在第1,2組的人員中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調(diào)查,求抽取的3人中恰有2人的年齡在第2組中的概率;
(Ⅲ)若從所有參與調(diào)查的人(人數(shù)很多)中任意選出3人,設(shè)這3人中關(guān)注生態(tài)文明建設(shè)的人數(shù)為X,求隨機變量X的分布列與數(shù)學期望.
【答案】(Ⅰ)平均年齡為 (歲).中位數(shù)為42.1歲(Ⅱ)(Ⅲ)分布列見解析,
【解析】
(Ⅰ)由頻率分布直方圖能求出,由此能求出這200人年齡的樣本平均數(shù)和中位數(shù).
(Ⅱ)第1,2組抽取的人數(shù)分別為2人,3人.設(shè)第2組中恰好抽取2人的事件為,利用排列組合能求出事件的概率.
(Ⅲ)從所有參與調(diào)查的人中任意選出1人,關(guān)注環(huán)境治理和保護問題的概率為,的所有可能取值為0,1,2,3,,分別求出相應(yīng)的概率,由此能求出的分布列和數(shù)學期望.
解:(Ⅰ)由,得,
平均年齡為 (歲).
設(shè)中位數(shù)為x歲,則,解得,
故這200人年齡的中位數(shù)為42.1歲
(Ⅱ)易知從第1,2組中抽取的人數(shù)分別為2,3,
設(shè)“抽取的3人中恰有2人的年齡在第2組中”為事件A,
則
(Ⅲ)從所有參與調(diào)查的人員中任意選出1人,則其關(guān)注生態(tài)文明建設(shè)的概率為.
由題意知X的所有可能取值為0,1,2,3,
所以X的分布列為
X | 0 | 1 | 2 | 3 |
P |
因為,所以
科目:高中數(shù)學 來源: 題型:
【題目】2020年3月,國內(nèi)新冠肺炎疫情得到有效控制,人們開始走出家門享受春光.某旅游景點為吸引游客,推出團體購票優(yōu)惠方案如下表:
購票人數(shù) | 1~50 | 51~100 | 100以上 |
門票價格 | 13元/人 | 11元/人 | 9元/人 |
兩個旅游團隊計劃游覽該景點.若分別購票,則共需支付門票費1290元;若合并成個團隊購票,則需支付門票費990元,那么這兩個旅游團隊的人數(shù)之差為( )
A.20B.30C.35D.40
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓的左頂點為,過點的直線與橢圓交于軸上方一點,以為邊作矩形,其中直線過原點.當點為橢圓的上頂點時,的面積為,且.
(1)求橢圓的標準方程;
(2)求矩形面積的最大值;
(3)矩形能否為正方形?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某連鎖超市旗艦店在元旦當天推出一個購物滿百元抽獎活動,凡是一次性購物滿百元者可以從抽獎箱中一次性任意摸出2個小球(抽獎箱內(nèi)共有5個小球,每個小球大小形狀完全相同,這5個小球上分別標有1,2,3,4,5 這5個數(shù)字).
(1)列出摸出的2個小球的所有可能的結(jié)果.
(2)已知該超市活動規(guī)定:摸出的2個小球都是偶數(shù)為一等獎;摸出的2個小球都是奇數(shù)為二等獎.請分別求獲得一等獎的概率與獲得二等獎的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,過的直線與拋物線C交于兩點,點A在第一象限,拋物線C在兩點處的切線相互垂直.
(1)求拋物線C的標準方程;
(2)若點P為拋物線C上異于的點,直線均不與軸平行,且直線AP和BP交拋物線C的準線分別于兩點,.
(i)求直線的斜率;
(ⅱ)求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)三棱錐的底面是正三角形,側(cè)棱長均相等,是棱上的點(不含端點),記直線與直線所成角為,直線與平面所成角為,二面角的平面角為,則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線與橢圓交于不同的兩點,.
(1)若線段的中點為,求直線的方程;
(2)若的斜率為,且過橢圓的左焦點,的垂直平分線與軸交于點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年春季受新冠肺炎疫情的影響,利用網(wǎng)絡(luò)軟件辦公與學習成為了一種新的生活方式,網(wǎng)上辦公軟件的開發(fā)與使用成為了一個熱門話題.為了解“釘釘”軟件的使用情況,“釘釘”公司借助網(wǎng)絡(luò)進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進行抽樣分析,得到下表(單位:人):
經(jīng)常使用 | 偶爾或不用 | 合計 | |
35歲及以下 | 70 | 30 | 100 |
35歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為“釘釘”軟件的使用情況與年齡有關(guān)?
(2)現(xiàn)從所抽取的35歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用“釘釘”軟件的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】Keep是一款具有社交屬性的健身APP,致力于提供健身教學跑步騎行交友及健身飲食指導裝備購買等--站式運動解決方案.Keep可以讓你隨時隨地進行鍛煉,記錄你每天的訓練進程不僅如此,它還可以根據(jù)不同人的體質(zhì),制定不同的健身計劃小吳根據(jù)Keep記錄的2019年1月至2019年11月期間每月跑步的里程(單位:十公里)數(shù)據(jù)整理并繪制了下面的折線圖根據(jù)該折線圖,下列結(jié)論正確的是( ).
A.月跑步里程逐月增加
B.月跑步里程最大值出現(xiàn)在10月
C.月跑步里程的中位數(shù)為5月份對應(yīng)的里程數(shù)
D.1月至5月的月跑步里程相對于6月至11月波動性更小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com