【題目】某連鎖超市旗艦店在元旦當天推出一個購物滿百元抽獎活動,凡是一次性購物滿百元者可以從抽獎箱中一次性任意摸出2個小球(抽獎箱內(nèi)共有5個小球,每個小球大小形狀完全相同,這5個小球上分別標有1,2,3,4,5 這5個數(shù)字).
(1)列出摸出的2個小球的所有可能的結(jié)果.
(2)已知該超市活動規(guī)定:摸出的2個小球都是偶數(shù)為一等獎;摸出的2個小球都是奇數(shù)為二等獎.請分別求獲得一等獎的概率與獲得二等獎的概率.
【答案】(1)所有可能的結(jié)果為,,,,,,,,,.(2)獲得一等獎的概率為.獲得二等獎的概率為.
【解析】
(1)根據(jù)題意,從個球中任取個,簡單列舉即可;
(2)根據(jù)(1)中所求,找出滿足題意的可能性個數(shù),即可由古典概型的概率計算公式求得結(jié)果.
(1)摸出的2個小球的所有可能的結(jié)果為,,,,,,,,,.
(2)由(1)知,摸出的2個小球的所有可能的結(jié)果共有10個,
摸出的2個小球都是偶數(shù)的所有可能的結(jié)果為,
所以獲得一等獎的概率為.
摸出的2個小球都是奇數(shù)的所有可能的結(jié)果為,,,
所以獲得二等獎的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,的頂點,,且、、成等差數(shù)列.
(1)求的頂點的軌跡方程;
(2)直線與頂點的軌跡交于兩點,當線段的中點落在直線上時,試問:線段的垂直平分線是否恒過定點?若過定點,求出定點的坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一塊以點為圓心,半徑為百米的圓形草坪,草坪內(nèi)距離點百米的點有一用于灌溉的水籠頭,現(xiàn)準備過點修一條筆直小路交草坪圓周于兩點,為了方便居民散步,同時修建小路,其中小路的寬度忽略不計.
(1)若要使修建的小路的費用最省,試求小路的最短長度;
(2)若要在區(qū)域內(nèi)(含邊界)規(guī)劃出一塊圓形的場地用于老年人跳廣場舞,試求這塊圓形廣場的最大面積.(結(jié)果保留根號和)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知當,函數(shù),且,若的圖像與的圖像在第二象限有公共點,且在該點處的切線相同,當實數(shù)變化時,實數(shù)的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知m∈{11,13,15,17,19},n∈{2000,2001,…,2019},則mn的個位數(shù)是1的概率為____________ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某地網(wǎng)民瀏覽購物網(wǎng)站的情況,從該地隨機抽取100名網(wǎng)民進行調(diào)查,其中男性、女性人數(shù)分別為45和55.下面是根據(jù)調(diào)查結(jié)果繪制的網(wǎng)民日均瀏覽購物網(wǎng)站時間的頻率分布直方圖,將日均瀏覽購物網(wǎng)站時間不低于40分鐘的網(wǎng)民稱為“網(wǎng)購達人”,已知“網(wǎng)購達人”中女性有10人.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并判斷是否有90%的把握認為是否為“網(wǎng)購達人”與性別有關(guān);
非網(wǎng)購達人 | 網(wǎng)購達人 | 總計 | |
男 | |||
女 | 10 | ||
總計 |
(2)將上述調(diào)査所得到的頻率視為概率,現(xiàn)在從該地的網(wǎng)民中隨機抽取3名,記被抽取的3名網(wǎng)民中的“網(wǎng)購達人”的人數(shù)為X,求X的分布列、數(shù)學期望和方差.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“綠水青山就是金山銀山”的理念越來越深入人心,據(jù)此,某網(wǎng)站調(diào)查了人們對生態(tài)文明建設(shè)的關(guān)注情況,調(diào)查數(shù)據(jù)表明,參與調(diào)查的人員中關(guān)注生態(tài)文明建設(shè)的約占80%.現(xiàn)從參與調(diào)查的關(guān)注生態(tài)文明建設(shè)的人員中隨機選出200人,并將這200人按年齡(單位:歲)分組:第1組[15,25),第2組[25,35),第3組[35,45),第4組[45,55),第5組[55,65],得到的頻率分布直方圖如圖所示.
(Ⅰ)求這200人的平均年齡(每一組用該組區(qū)間的中點值作為代表)和年齡的中位數(shù)(保留一位小數(shù));
(Ⅱ)現(xiàn)在要從年齡在第1,2組的人員中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調(diào)查,求抽取的3人中恰有2人的年齡在第2組中的概率;
(Ⅲ)若從所有參與調(diào)查的人(人數(shù)很多)中任意選出3人,設(shè)這3人中關(guān)注生態(tài)文明建設(shè)的人數(shù)為X,求隨機變量X的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),是橢圓:的兩個焦點,過,分別作直線,,且,若與橢圓交于,兩點,與橢圓交于,兩點(點,在軸上方),則四邊形面積的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長軸長為4,右焦點為,且橢圓上的點到點的距離的最小值與最大值的積為1,圓與軸交于兩點.
(1)求橢圓的方程;
(2)動直線與橢圓交于兩點,且直線與圓相切,求的面積與的面積乘積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com