【題目】已知函數(shù)f(x)=x2-2ax+5.
(1)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;
(2)若a≤1,求函數(shù)y=|f(x)|在[0,1]上的最大值.
【答案】(1) a =2.(2) ymax=.
【解析】
(1)利用二次函數(shù)的圖象,求出二次函數(shù)的最值,列出不等式組,即可解出a的值.
(2)對(duì)對(duì)稱軸的位置分類討論,結(jié)合二次函數(shù)的圖象,求出函數(shù)的最大值.
(1)函數(shù)f(x)=x2-2ax+5=(x-a)2+5-a2,且a>1,
∴f(x)在[1,a]上是減函數(shù),又定義域和值域均是[1,a],
∴,即,解得a =2.
(2)①當(dāng)a≤0時(shí),函數(shù)y=|f(x)|在[0,1]上單調(diào)遞增,
故ymax=f(1)=6-2a,
②當(dāng)0<a≤1時(shí),此時(shí)△=4a2-5<0,且f(x)圖象開口向上,對(duì)稱軸在(0,1)內(nèi),
故ymax=max{f(0),f(1)}=max{5,6-2a}=,
綜上所求:ymax=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)銷商銷售某種產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出該產(chǎn)品獲利潤(rùn)元;未售出的產(chǎn)品,每虧損元.根據(jù)以往的銷售記錄,得到一個(gè)銷售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個(gè)銷售季度購(gòu)進(jìn)了該產(chǎn)品.用(單位:,)表示下一個(gè)銷售季度內(nèi)的市場(chǎng)需求量,(單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).
(1)將表示為的函數(shù);
(2)根據(jù)直方圖估計(jì)利潤(rùn)不少于元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若函數(shù)y=f(x)的圖象與直線y=x+a沒(méi)有交點(diǎn),求a的取值范圍;
(3)若函數(shù)h(x)=+m2x-1,x∈[0,log23],是否存在實(shí)數(shù)m使得h(x)最小值為0,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐PABCD的底面ABCD是矩形,PA⊥底面ABCD,點(diǎn)E、F分別是棱PC、PD的中點(diǎn),則
①棱AB與PD所在直線垂直;
②平面PBC與平面ABCD垂直;
③△PCD的面積大于△PAB的面積;
④直線AE與直線BF是異面直線.
以上結(jié)論正確的是________.(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于曲線,給出下列四個(gè)結(jié)論:①曲線是橢圓;②關(guān)于坐標(biāo)原點(diǎn)中心對(duì)稱;③關(guān)于直線軸對(duì)稱;④所圍成封閉圖形面積小于8.則其中正確結(jié)論的序號(hào)是( )
A. ②④ B. ②③④ C. ①②③④ D. ①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ADC=60°,側(cè)面PDC是正三角形,平面PDC⊥平面ABCD,CD=2,M為PB的中點(diǎn).
(1)求證:PA⊥平面CDM.
(2)求二面角D-MC-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=.
(Ⅰ)證明:平面A1BD∥平面CD1B1;
(Ⅱ)求三棱柱ABD﹣A1B1D1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)為,一雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),且它的實(shí)軸長(zhǎng)等于虛軸長(zhǎng),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線和與橢圓的交點(diǎn)分別為和,其中在軸的同一側(cè).
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)是否存在題設(shè)中的點(diǎn),使得?若存在, 求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙二人用4張撲克牌分別是紅桃2,紅桃3,紅桃4,方片4玩游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.
寫出甲、乙二人抽到的牌的所有情況;
甲乙約定,若甲抽到的牌的牌面數(shù)字比乙大,則甲勝;否則乙勝,你認(rèn)為此約定是否公平?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com