【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ADC=60°,側(cè)面PDC是正三角形,平面PDC⊥平面ABCD,CD=2,M為PB的中點(diǎn).
(1)求證:PA⊥平面CDM.
(2)求二面角D-MC-B的余弦值.
【答案】(1) 見(jiàn)解析;(2)-.
【解析】試題分析:
(1)取DC中點(diǎn)O,連接PO,根據(jù)題意可證得OA,OC,OP兩兩垂直,建立空間直角坐標(biāo)系,運(yùn)用坐標(biāo)法可證得,從而PA⊥DM,PA⊥DC,根據(jù)線面垂直的判定定理可得結(jié)論.(2)結(jié)合(1)可求得平面BMC的一個(gè)法向量,又平面CDM的法向量為,求出兩向量夾角的余弦值,結(jié)合圖形可得二面角的余弦值.
試題解析:
(1)取DC中點(diǎn)O,連接PO.
∵側(cè)面PDC是正三角形,
∴PO⊥DC,
又平面PDC⊥平面ABCD,平面PDC∩平面ABCD=DC,
∴PO⊥底面ABCD.
又底面ABCD為菱形,且∠ADC=60°,DC=2,
∴DO=1,OA⊥DC.
以O為原點(diǎn),分別以OA,OC,OP所在直線為x軸,y軸,z軸,建立如圖所示的空間直角坐標(biāo)系O-xyz.
則, ,
∴,
∴,
∴PA⊥DM,PA⊥DC,
又DM∩DC=D,
∴PA⊥平面CDM.
(2)由(1)得,
設(shè)平面BMC的一個(gè)法向量,
由,得,
令z=1,得.
由(1)知平面CDM的法向量為,
∴,
由圖形知二面角D-MC-B是鈍角,
所以二面角D-MC-B的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè),直線交曲線于兩點(diǎn),是直線上的點(diǎn),且,當(dāng)最大時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a1+2a2=5,4a=a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=2,且bn+1=bn+an,求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè),求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,AB∥CD,AC=,AB=2BC=2,AC⊥FB.
(1)求證:AC⊥平面FBC;
(2)求四面體FBCD的體積;
(3)線段AC上是否存在點(diǎn)M,使得EA∥平面FDM?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2-2ax+5.
(1)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;
(2)若a≤1,求函數(shù)y=|f(x)|在[0,1]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.
(1).證明:平面PAB⊥平面PAD;
(2).若PA=PD=AB=DC, ∠APD =90°,且四棱錐PABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“劍橋?qū)W派”創(chuàng)始人之一數(shù)學(xué)家哈代說(shuō)過(guò):“數(shù)學(xué)家的造型,同畫(huà)家和詩(shī)人一樣,也應(yīng)當(dāng)是美麗的”;古希臘數(shù)學(xué)家畢達(dá)哥拉斯創(chuàng)造的“黃金分割”給我們的生活處處帶來(lái)美;我國(guó)古代數(shù)學(xué)家趙爽創(chuàng)造了優(yōu)美“弦圖”.“弦圖”是由四個(gè)全等的直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,則等于( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為,曲線的參數(shù)方程是,(為參數(shù)).
(1)求直線的直角坐標(biāo)方程和曲線的普通方程;
(2)設(shè)直線與曲線交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為平行四邊形, , , 底面.
(1)證明:平面平面;
(2)若二面角的大小為,求與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com