【題目】如圖,在四棱錐中,底面是矩形,,,底面.
(1)當為何值時,平面?證明你的結(jié)論;
(2)若在邊上至少存在一點,使,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線,過點作直線和曲線交于、兩點.
(1)求曲線的焦點到它的漸近線之間的距離;
(2)若,點在第一象限,軸,垂足為,連結(jié),求直線傾斜角的取值范圍;
(3)過點作另一條直線,和曲線交于、兩點,問是否存在實數(shù),使得和同時成立?如果存在,求出滿足條件的實數(shù)的取值集合,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
(1)當時,解不等式;
(2)已知是以2為周期的偶函數(shù),且當時,有.若,且,求函數(shù)的反函數(shù);
(3)若在上存在個不同的點,,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,已知曲線:和曲線:,以極點為坐標原點,極軸為軸非負半軸建立平面直角坐標系.
(1)求曲線和曲線的直角坐標方程;
(2)若點是曲線上一動點,過點作線段的垂線交曲線于點,求線段長度的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知是圓的直徑,,在圓上且分別在的兩側(cè),其中,.現(xiàn)將其沿折起使得二面角為直二面角,則下列說法不正確的是( )
A.,,,在同一個球面上
B.當時,三棱錐的體積為
C.與是異面直線且不垂直
D.存在一個位置,使得平面平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且(2b-c)cos A=acos C.
(1)求角A的大。
(2)若a=3,b=2c,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com