【題目】已知四棱柱的所有棱長(zhǎng)都為2,且.
(1)證明:平面平面;
(2)求直線與平面所成的角的正弦值.
【答案】(1)詳見解析;(2).
【解析】
(1)要證平面平面,轉(zhuǎn)化為證明平面,通過證明及可得;
(2)連接,由(1)可得為直線與平面所成的角,在中求角的正弦值.另外可以用向量法求線面角.
(1)證明:設(shè)與的交點(diǎn)為,連接,
因?yàn)?/span>,,,
所以,
所以,
又因?yàn)?/span>是的中點(diǎn),所以,
另由且,
所以平面,
而平面,所以平面平面.
(2)(法一)連接,由(1)知平面,
所以為直線與平面所成的角,
在菱形中,,
故,
所以
又因?yàn)?/span>,所以,
所以.
(法二)過作直線平面,分別以、、為、、軸,建立如圖所示空間直角坐標(biāo)系,
依題意,得,,,,,
所以,,,
設(shè)平面的法向量為,
所以,令,則,即,
所以,
即直線與平面所成的角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,底面是邊長(zhǎng)為的正三角形,點(diǎn)在底面上的射影恰是的中點(diǎn),側(cè)棱和底面成角.
(1)若為側(cè)棱上一點(diǎn),當(dāng)為何值時(shí),;
(2)求二面角的余弦值大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】至年底,我國(guó)發(fā)明專利申請(qǐng)量已經(jīng)連續(xù)年位居世界首位,下表是我國(guó)年至年發(fā)明專利申請(qǐng)量以及相關(guān)數(shù)據(jù).
注:年份代碼~分別表示~.
(1)可以看出申請(qǐng)量每年都在增加,請(qǐng)問這幾年中哪一年的增長(zhǎng)率達(dá)到最高,最高是多少?
(2)建立關(guān)于的回歸直線方程(精確到),并預(yù)測(cè)我國(guó)發(fā)明專利申請(qǐng)量突破萬件的年份.
參考公式:回歸直線的斜率和截距的最小二乘法估計(jì)分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,,,底面.
(1)當(dāng)為何值時(shí),平面?證明你的結(jié)論;
(2)若在邊上至少存在一點(diǎn),使,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】謝爾賓斯基三角形(Sierpinski triangle)是一種分形幾何圖形,由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出,它是一個(gè)自相似的例子,其構(gòu)造方法是:
(1)取一個(gè)實(shí)心的等邊三角形(圖1);
(2)沿三邊中點(diǎn)的連線,將它分成四個(gè)小三角形;
(3)挖去中間的那一個(gè)小三角形(圖2);
(4)對(duì)其余三個(gè)小三角形重復(fù)(1)(2)(3)(4)(圖3).
制作出來的圖形如圖4,….
若圖1(陰影部分)的面積為1,則圖4(陰影部分)的面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)=|cosx|+cos|2x|有下列四個(gè)結(jié)論:①是偶函數(shù);②π是的最小正周期;③在[π,π]上單調(diào)遞增;④的值域?yàn)?/span>[﹣2,2].上述結(jié)論中,正確的個(gè)數(shù)為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+)=1.
(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;
(2)已知點(diǎn)M (2,0),若直線l與曲線C相交于P、Q兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且AB=1,BC=2, ∠ABC=60°,PA⊥平面ABCD,AE⊥PC于E,
下列四個(gè)結(jié)論:①AB⊥AC;②AB⊥平面PAC;③PC⊥平面ABE;④BE⊥PC.正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,每個(gè)側(cè)面均為正方形,為底邊的中點(diǎn),為側(cè)棱的中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com