【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),f(1)=0, >0(x>0),則不等式x2f(x)>0的解集是 .
【答案】(﹣1,0)∪(1,+∞)
【解析】解:[ ]′= >0,即x>0時 是增函數(shù), 當x>1時, >f(1)=0,f(x)>0.
0<x<1時, <f(1)=0,f(x)<0,
又f(x)是奇函數(shù),所以﹣1<x<0時,f(x)=﹣f(﹣x)>0,
x<﹣1時f(x)=﹣f(﹣x)<0,
則不等式x2f(x)>0即f(x)>0的解集是(﹣1,0)∪(1,+∞),
所以答案是:(﹣1,0)∪(1,+∞).
【考點精析】解答此題的關鍵在于理解利用導數(shù)研究函數(shù)的單調性的相關知識,掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.
科目:高中數(shù)學 來源: 題型:
【題目】在汶川大地震后對唐家山堰塞湖的搶險過程中,武警官兵準備用射擊的方法引爆從湖壩上游漂流而下的一個巨大的汽油罐.已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊是相互獨立的,且命中的概率都是.
(1)求油罐被引爆的概率;
(2)如果引爆或子彈打光則停止射擊,設射擊次數(shù)為,求的分布列及.( 結果用分數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以O為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρcos( )=1,M,N分別為C與x軸,y軸的交點.
(1)寫出C的直角坐標方程,并求M,N的極坐標;
(2)設MN的中點為P,求直線OP的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足條件an+1= .
(1)若a1= ,求a2 , a3 , a4的值.
(2)已知對任意的n∈N+ , 都有an≠1,求證:an+3=an對任意的正整數(shù)n都成立;
(3)在(1)的條件下,求a2015 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(1)求函數(shù)的最小正周期及單調遞增區(qū)間;
(2)若在銳角中,已知函數(shù)的圖象經(jīng)過點,邊,求周長的最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究小組為了研究某品牌智能手機在正常使用情況下的電池供電時間,分別從該品牌手機的甲、乙兩種型號中各選取部進行測試,其結果如下:
甲種手機供電時間(小時) | ||||||
乙種手機供電時間(小時) |
(1)求甲、乙兩種手機供電時間的平均值與方差,并判斷哪種手機電池質量好;
(2)為了進一步研究乙種手機的電池性能,從上述部乙種手機中隨機抽取部求這兩部手機中恰有一部手機的供電時間大于該種手機供電時間平均值的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= x2+lnx(其中a≠0)
(1)求f(x)的單調區(qū)間;
(2)若f(x)<﹣ 恒成立,試求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com