【題目】2020年開(kāi)始,國(guó)家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛(ài)好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門參加考試(6選3),每科目滿分100分.為了應(yīng)對(duì)新高考,某高中從高一年級(jí)1000名學(xué)生(其中男生550人,女生450人)中,根據(jù)性別分層,采用分層抽樣的方法從中抽取100名學(xué)生進(jìn)行調(diào)查.

(1)學(xué)校計(jì)劃在高一上學(xué)期開(kāi)設(shè)選修中的“物理”和“地理”兩個(gè)科目,為了了解學(xué)生對(duì)這兩個(gè)科目的選課情況,對(duì)抽取到的100名學(xué)生進(jìn)行問(wèn)卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),如表是根據(jù)調(diào)查結(jié)果得到的2×2列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為選擇科目與性別有關(guān)?說(shuō)明你的理由;

(2)在抽取到的女生中按(1)中的選課情況進(jìn)行分層抽樣,從中抽出9名女生,再?gòu)倪@9名女生中隨機(jī)抽取4人,設(shè)這4人中選擇“地理”的人數(shù)為,求的分布列及數(shù)學(xué)期望.

選擇“物理”

選擇“地理”

總計(jì)

男生

10

女生

25

總計(jì)

附參考公式及數(shù)據(jù):,其中.

0.05

0.01

3.841

6.635

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析

【解析】

(1)根據(jù)列聯(lián)表求出,結(jié)合臨界值表,即可得到結(jié)論;

(2)由題意,得到選擇地理的人數(shù)為隨機(jī)變量的取值0,1,2,3,4,求得隨機(jī)變量取值對(duì)應(yīng)的概率,求出分布列,再利用數(shù)學(xué)期望的公式,即可求解.

(1)由題意,抽取到男生人數(shù)為,女生人數(shù)為,

所以2×2列聯(lián)表為:

選擇“物理”

選擇“地理”

總計(jì)

男生

45

10

55

女生

25

20

45

總計(jì)

70

30

100

所以,

所以有99%的把握認(rèn)為選擇科目與性別有關(guān).

(2)從45名女生中分層抽樣抽9名女生,所以這9名女生中有5人選擇物理,4人選擇地理,9名女生中再選擇4名女生,則這4名女生中選擇地理的人數(shù)可為0,1,2,3,4.

設(shè)事件發(fā)生概率為,

,,

所以的分布列為:

0

1

2

3

4

期望

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017527日當(dāng)今世界圍棋排名第一的柯潔在與的人機(jī)大戰(zhàn)中中盤(pán)棄子認(rèn)輸,至此柯潔與的三場(chǎng)比賽全部結(jié)束,柯潔三戰(zhàn)全負(fù),這次人機(jī)大戰(zhàn)再次引發(fā)全民對(duì)圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.

(1)請(qǐng)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有95%的把握認(rèn)為“圍棋迷”與性別有關(guān)?

非圍棋迷

圍棋迷

合計(jì)

10

55

合計(jì)

(2)為了進(jìn)一步了解“圍棋迷”的圍棋水平,從“圍棋迷”中按性別分層抽樣抽取5名學(xué)生組隊(duì)參加校際交流賽,首輪該校需派兩名學(xué)生出賽,若從5名學(xué)生中隨機(jī)抽取2人出賽,求2人恰好一男一女的概率.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定函數(shù)和常數(shù),若恒成立,則稱()為函數(shù)的一個(gè)好數(shù)對(duì)”,已知函數(shù)的定義域?yàn)?/span>.

1)若(1,1)是函數(shù)的一個(gè)好數(shù)對(duì),且,求;

2)若(2,0)是函數(shù)的一個(gè)好數(shù)對(duì),且當(dāng)時(shí),,判斷方程在區(qū)間[1,8]上根的個(gè)數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》里有一段敘述:今有良馬與駑馬發(fā)長(zhǎng)安至齊,齊去長(zhǎng)安一千一百二十五里,良馬初日行一百零三里,日增十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復(fù)還迎駑馬,二馬相逢.根據(jù)該問(wèn)題設(shè)計(jì)程序框圖如下,若輸入,則輸出的值是( )

A. 8 B. 9 C. 12 D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,其左、右焦點(diǎn)分別為,點(diǎn)是坐標(biāo)平面內(nèi)一點(diǎn),且, 為坐標(biāo)原點(diǎn)).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)且斜率為的動(dòng)直線交橢圓于兩點(diǎn),在軸上是否存在定點(diǎn),使以為直徑的圓恒過(guò)該點(diǎn)?若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修45:不等式選講

設(shè)函數(shù)

)解不等式;

)若對(duì)一切實(shí)數(shù)均成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題中,其中錯(cuò)誤的個(gè)數(shù)是()

①經(jīng)過(guò)球面上任意兩點(diǎn),可以作且只可以作一個(gè)大圓;

②經(jīng)過(guò)球直徑的三等分點(diǎn),作垂直于該直徑的兩個(gè)平面,則這兩個(gè)平面把球面分成三部分的面積相等;

③球的面積是它大圓面積的四倍;

④球面上兩點(diǎn)的球面距離,是這兩點(diǎn)所在截面圓上,以這兩點(diǎn)為端點(diǎn)的劣弧的長(zhǎng).

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】f(x)的定義域?yàn)?0,+∞),且對(duì)一切x>0,y>0都有ff(x)-f(y),當(dāng)x>1時(shí),有f(x)>0。

(1)求f(1)的值;

(2)判斷f(x)的單調(diào)性并證明;

(3)若f(6)=1,解不等式f(x+3)-f<2;

(4)若f(4)=2,求f(x)在[1,16]上的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),求的最大值和最小值;

2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案