某城市隨機抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計如下:
API | |||||||
空氣質(zhì)量 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中重度污染 | 重度污染 |
天數(shù) | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
| 非重度污染 | 重度污染 | 合計 |
供暖季 | | | |
非供暖季 | | | |
合計 | | | 100 |
(1);(2)有95%的把握認為空氣重度污染與供暖有關(guān)
解析試題分析:(1)根據(jù)所給數(shù)據(jù),求出經(jīng)濟損失S大于200元且不超過600元的天數(shù)的頻率,以此頻率作為“在本年內(nèi)隨機抽取一天,該天經(jīng)濟損失S大于200元且不超過600元”的概率(估計)
(2)由于總共有15天為重度污染,其中有8天在供暖季,那么有7天在非供暖季;在30天供暖季中有8天為重度污染,那么有22天為非重度污染;非重度污染有85天其中有22天在供暖季,那么有63天在非供暖季,由此可完成列聯(lián)表:
代入公式即可求得K2的觀測值,從而確定是否有95%的把握認為空氣重度污染與供暖有關(guān) 非重度污染 重度污染 合計 供暖季 22 8 30 非供暖季 63 7 70 合計 85 15 100
試題解析:(Ⅰ)設(shè)“在本年內(nèi)隨機抽取一天,該天經(jīng)濟損失S大于200元且不超過600元”為事件A
1分
由,得,頻數(shù)為39, 3分
所以 4分
(Ⅱ)根據(jù)以上數(shù)據(jù)得到如下列聯(lián)表:
8分 非重度污染 重度污染 合計 供暖季 22 8 30 非供暖季 63 7 70 合計 85 15 100
K2的觀測值 10分
所以有95%的把握認為空氣重度污染與供暖有關(guān) 12分
考點:1、概率與統(tǒng)計;2、函數(shù)的應(yīng)用
科目:高中數(shù)學(xué) 來源: 題型:解答題
某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進行視力調(diào)查.
(1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(2)若從抽取的6所學(xué)校中隨機抽取2所學(xué)校做進一步數(shù)據(jù)分析,
①列出所有可能的抽取結(jié)果;
②求抽取的2所學(xué)校均為小學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
衡水某中學(xué)對高二甲、乙兩個同類班級進行“加強‘語文閱讀理解’訓(xùn)練對提高‘?dāng)?shù)學(xué)應(yīng)用題’得分率作用”的試驗,其中甲班為試驗班(加強語文閱讀理解訓(xùn)練),乙班為對比班(常規(guī)教學(xué),無額外訓(xùn)練),在試驗前的測試中,甲、乙兩班學(xué)生在數(shù)學(xué)應(yīng)用題上的得分率基本一致,試驗結(jié)束后,統(tǒng)計幾次數(shù)學(xué)應(yīng)用題測試的平均成績(均取整數(shù))如下表所示:
| 60分 以下 | 61~ 70分 | 71~ 80分 | 81~ 90分 | 91~ 100分 |
甲班 (人數(shù)) | 3 | 6 | 11 | 18 | 12 |
乙班 (人數(shù)) | 4 | 8 | 13 | 15 | 10 |
| 優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計 |
甲班 | | | |
乙班 | | | |
總計 | | | |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn).現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù).
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從穩(wěn)定性的角度考慮,你認為選派哪位學(xué)生參加合適?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某車間共有12名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(1)根據(jù)莖葉圖計算樣本均值.
(2)日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在某次數(shù)學(xué)考試中,抽查了1000名學(xué)生的成績,得到頻率分布直方圖如圖所示,規(guī)定85分及其以上為優(yōu)秀.
(1)下表是這次抽查成績的頻數(shù)分布表,試求正整數(shù)、的值;
區(qū)間 | [75,80) | [80,85) | [85,90) | [90,95) | [95,100] |
人數(shù) | 50 | a | 350 | 300 | b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某車間共有12名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(1)根據(jù)莖葉圖計算樣本均值;
(2)日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
2013年某市某區(qū)高考文科數(shù)學(xué)成績抽樣統(tǒng)計如下表:
(1)求出表中m、n、M、N的值,并根據(jù)表中所給數(shù)據(jù)在下面給出的坐標(biāo)系中畫出頻率分布直方圖;(縱坐標(biāo)保留了小數(shù)點后四位小數(shù))
(2)若2013年北京市高考文科考生共有20000人,試估計全市文科數(shù)學(xué)成績在90分及90分以上的人數(shù);
(3)香港某大學(xué)對內(nèi)地進行自主招生,在參加面試的學(xué)生中,有7名學(xué)生數(shù)學(xué)成績在140分以上,其中男生有4名,要從7名學(xué)生中錄取2名學(xué)生,求其中恰有1名女生被錄取的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某學(xué)校的三個學(xué)生社團的人數(shù)分布如下表(每名學(xué)生只能參加一個社團):
| 圍棋社 | 舞蹈社 | 拳擊社 |
男生 | 5 | 10 | 28 |
女生 | 15 | 30 | m |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com