在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,若a:b:c=3:5:6,則
2sinA-sinBsinC
=
 
分析:通過a:b:c=3:5:6,利用正弦定理推出
sinA
sinC
,
sinB
sinC
的比值,即可得到表達式的值.
解答:解:在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,若a:b:c=3:5:6,
所以
a
c
=
sinA
sinC
=
1
2
;
b
c
=
sinB
sinC
=
5
6
;
所以
2sinA-sinB
sinC
=
2sinA
sinC
-
sinB
sinC
=1-
5
6
=
1
6
;
故答案為:
1
6
點評:本題考查三角形中正弦定理的應用,考查計算能力,恰當利用比例關系是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•臨沂一模)已知函數(shù)f(x)=cos
x
2
-
3
sin
x
2

(I)若x∈[-2π,2π],求函數(shù)f(x)的單調(diào)減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A,B,C的對邊,若f(2A-
2
3
π)=
4
3
,sinB=
5
cosC,a=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•煙臺二模)在△ABC中,a、b、c為角A、B、C所對的三邊.已知b2+c2-a2=bc
(1)求角A的值;
(2)若a=
3
,設內(nèi)角B為x,周長為y,求y=f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•保定一模)在△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,三邊a、b、c成等差數(shù)列,且B=
π
4
,則(cosA一cosC)2的值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中角A、B、C的對邊分別為a、b、c設向量
m
=(a,cosB),
n
=(b,cosA)且
m
n
,
m
n

(Ⅰ)若sinA+sinB=
6
2
,求A;
(Ⅱ)若△ABC的外接圓半徑為1,且abx=a+b試確定x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,已知a=2,b=
7
,∠B=
π
3
,則△ABC的面積為( 。

查看答案和解析>>

同步練習冊答案