【題目】已知橢圓的左、右焦點分別為,橢圓過點,直線交軸于,且,為坐標原點.
(1)求橢圓的方程;
(2)設是橢圓的上頂點,過點分別作直線交橢圓于兩點,設這兩條直線的斜率分別為,且,證明:直線過定點.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線().
(1)求直線經過的定點坐標;
(2)若直線交負半軸于,交軸正半軸于,為坐標系原點,的面積為,求的最小值并求此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校1800名學生在一次百米測試中,成績全部介于13秒與18秒之間,抽取其中50個樣本,將測試結果按如下方式分成五組:第一組,第二組,第五組,下圖是按上述分組方法得到的頻率分布直方圖.
(1)若成績小于15秒認為良好,求該樣本在這次百米測試中成績良好的人數(shù);
(2)請估計學校1800名學生中,成績屬于第四組的人數(shù);
(3)請根據(jù)頻率分布直方圖,求樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù)和方差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(1)求函數(shù)的單調區(qū)間;
(2)函數(shù)在定義域內存在零點,求的取值范圍.
(3)若,當時,不等式恒成立,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(1)當時,求函數(shù)在上的最大值和最小值;
(2)當時,是否存在正實數(shù),當(是自然對數(shù)底數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).(Ⅰ)求函數(shù)的最小正周期及單調遞增區(qū)間;(Ⅱ)將的圖像向右平移個單位得到函數(shù)的圖像,若,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,公園有一塊邊長為的等邊的邊角地,現(xiàn)修成草坪,圖中把草坪分成面積相等的兩部分,在上,在上.
(1)設(),,求用表示的函數(shù)關系式;
(2)如果是灌溉水管,為節(jié)約成本,希望它最短,的位置應在哪里?如果是參觀線路,則希望它最長,的位置又應在哪里?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高二(1)班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,且將全班25人的成績記為由右邊的程序運行后,輸出.據(jù)此解答如下問題:
(Ⅰ)求莖葉圖中破損處分數(shù)在[50,60),[70,80),[80,90)各區(qū)間段的頻數(shù);
(Ⅱ)利用頻率分布直方圖估計該班的數(shù)學測試成績的眾數(shù),中位數(shù)分別是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(A)已知, , ,且函數(shù)的最小正周期為.
(1)求的值;
(2)若, , , ,求的值.
(B)已知, , ,且函數(shù)的最小正周期為.
(1)求的解析式;
(2)若關于的方程,在內有兩個不同的解, ,求證: .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com