【題目】已知四棱錐中,底面為直角梯形, 平面,側(cè)面是等腰直角三角形, , ,點(diǎn)是棱的中點(diǎn).
(1)證明:平面平面;
(2)求銳二面角的余弦值.
【答案】(1)見解析(2)
【解析】,
試題分析:(1)取AC的中點(diǎn)F,連接BF,可證平面ACD,又可證四邊形BFME是平行四邊形.可得 EM//BF,可證平面ACD,從而平面平面;(2)利用空間直角坐標(biāo)進(jìn)行向量運(yùn)算,根據(jù)法向量夾角即可求出.
試題解析:
(1)證明:取AC的中點(diǎn)F,連接BF,
因?yàn)?/span>AB=BC,所以, 平面ABC,所以CD .
又所以平面ACD.①
因?yàn)?/span>AM=MD,AF=CF,所以.
因?yàn)?/span> ,所以//MF,
所以四邊形BFME是平行四邊形.所以EM//BF.②
由①②,得平面ACD,所以平面平面;
(2)解: BE平面ABC,
又,
以點(diǎn)B為原點(diǎn),直線BC、BA、BE分別為x,y,z軸,
建立空間直角坐標(biāo)系B-xyz.
由,得B(0,0,0),C(2,0,0),A(0,2,0),D(2,0,2).
由中點(diǎn)坐標(biāo)公式得, ,,
設(shè)向量為平面BMC的一個(gè)法向量,則即
令y=1,得x=0,z=-1,即,
由(I)知, 是平面ACD的一個(gè)法向量.
設(shè)二面角B-CM-A的平面角為,
則,
又二面角B-CM-A為銳二面角,故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率,且橢圓經(jīng)過(guò)點(diǎn),過(guò)橢圓的左焦點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓于, 兩點(diǎn).
(1)求橢圓的方程;
(2)設(shè)線段的垂直平分線與軸交于點(diǎn),求△的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—5:不等式選講
已知函數(shù)(x)=|2x-a|+ |x -1|.
(Ⅰ)當(dāng)a=3時(shí),求不等式(x)≥2的解集;
(Ⅱ)若(x)≥5-x對(duì)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線y=x+ln x在點(diǎn)(1,1)處的切線與曲線y=ax2+(a+2)x+1相切,則a=________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)等比數(shù)列{an}(n∈N*),首項(xiàng)a1=3,前n項(xiàng)和為Sn,且S3+a3、S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{nan}的前n項(xiàng)和為Tn,若對(duì)任意正整數(shù)n,都有Tn∈[a,b],求b-a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題恒成立;命題方程表示雙曲線.
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若命題“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形與梯形所在的平面互相垂直, , ,點(diǎn)是線段的中點(diǎn).
(1)求證: 面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)為調(diào)研學(xué)生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取了100人,每人分別對(duì)這兩家餐廳進(jìn)行評(píng)分,滿分均為60分.
整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)以為組距分成組: , , , , , ,得到A餐廳分?jǐn)?shù)的頻率分布直方圖,和B餐廳分?jǐn)?shù)的頻數(shù)分布表:
B餐廳分?jǐn)?shù)頻數(shù)分布表 | |
分?jǐn)?shù)區(qū)間 | 頻數(shù) |
定義學(xué)生對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”如下:
分?jǐn)?shù) | |||
滿意度指數(shù) |
(Ⅰ)在抽樣的100人中,求對(duì)A餐廳評(píng)價(jià)“滿意度指數(shù)”為的人數(shù);
(Ⅱ)從該校在A,B兩家餐廳都用過(guò)餐的學(xué)生中隨機(jī)抽取1人進(jìn)行調(diào)查,試估計(jì)其對(duì)A餐廳評(píng)價(jià)的“滿意度指數(shù)”比對(duì)B餐廳評(píng)價(jià)的“滿意度指數(shù)”高的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會(huì)選擇哪一家?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com