1.設(shè)命題p:?n0∈N,n02>2n0,則¬p為( 。
A.?n∉N,n2≤2nB.$?{n_0}∈N,{n_0}^2≤{2^{n_0}}$
C.?n∈N,n2≤2nD.$?{n_0}∉N,{n_0}^2≤{2^{n_0}}$

分析 利用特稱命題的否定是全稱命題,寫出結(jié)果即可.

解答 解:因為特稱命題的否定是全稱命題,所以,命題p:?n0∈N,n02>2n0,則¬p為:?n∈N,n2≤2n
故選:C.

點評 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.給出下列命題:
①若直線l與平面α內(nèi)的一條直線平行,則l∥α;
②若平面α⊥平面β,且α∩β=l,則過α內(nèi)一點P與l垂直的直線垂直于平面β;
③?x0∈(3,+∞),x0∉(2,+∞);
④已知a∈R,則“a<2”是“a2<2a”的必要不充分條件.
其中正確命題有( 。
A.②④B.①②C.D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,若b,a,c成等差數(shù)列,且sin2A=sinBsinC,則△ABC的形狀為( 。
A.等腰三角形B.直角三角形C.等邊三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知集合A={0,1,2},B={1,m},若B⊆A,則實數(shù)m的值是0或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=lg(x-1)+$\frac{3}{x-2}$的定義域是(1,2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知記錄7名運動員選手身高(單位:cm)的莖葉圖如圖,其平均身高為177cm,因有一名運動員的身高記錄看不清楚,設(shè)其末位數(shù)為x,那么推斷x的值為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量 $\overrightarrow{a}$=(-2,1),$\overrightarrow$=(x,2),若$\overrightarrow{a}$⊥$\overrightarrow$,則x的值等于( 。
A.1B.-1C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知命題p:?x∈R,x2+ax+1>0,寫出¬q:?x∈R,x2+ax+1≤0;若命題p是假命題,則實數(shù)a的取值范圍是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知曲線C的極坐標(biāo)方程為 ρ=2cosθ,直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{6}$)=m.若直線l與曲線C有且只有一個公共點,求實數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案