【題目】設函數(shù).
(1)當時,求函數(shù)的極值;
(2)設,對任意,都有,求實數(shù)的取值范圍.
【答案】(1)無極大值;(2).
【解析】試題分析:
(1) 當時, ,定義域為, ,結合函數(shù)的單調(diào)性可得,函數(shù)沒有極大值.
(2) 由已知,構造函數(shù),則在上單調(diào)遞減,分類討論可得:
①當時, .
②當時, ,
綜上,由①②得: .
試題解析:
(1)當時, ,定義域為, ,
當時, 單調(diào)遞減,
當時, 單調(diào)遞增,
的遞減區(qū)間是,遞增區(qū)間是.
無極大值.
(2)由已知,
設,則在上單調(diào)遞減,
①當時, ,
所以,
整理:
設,則在上恒成立,
所以在上單調(diào)遞增,所以最大值是.
②當時, ,
所以,
整理:
設,則在上恒成立,
所以在上單調(diào)遞增,所以最大值是,
綜上,由①②得: .
科目:高中數(shù)學 來源: 題型:
【題目】若定義運算: ;,例如23=3,則下列等式不能成立的是( )
A.ab=ba
B.(ab)c=a(bc)
C.(ab)2=a2b2
D.c(ab)=(ca)(cb)(c>0)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實數(shù)的取值范圍;
(3)證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a,b,c均大于1,且logaclogbc=4,則下列各式中,一定正確的是( )
A.ac≥b
B.ab≥c
C.bc≥a
D.ab≤c
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的最小正周期為π,且f( )= .
(1)求ω和φ的值;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)求f(x)在[0, ]上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax3﹣6x2+1,若f(x)存在唯一的零點x0 , 且x0>0,則a的取值范圍是( )
A.(﹣∞,﹣4)
B.(4,+∞)
C.(﹣∞,﹣4 )
D.(4 ,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在信息時代的今天,隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式,某機構對“使用微
信交流”的態(tài)度進行調(diào)查,隨機抽取了人,他們年齡的頻數(shù)分布及對 “使用微信交流”贊成的人數(shù)如
下表:(注:年齡單位:歲)
年齡 | ||||||
頻數(shù) | ||||||
贊成人數(shù) |
(1))若以“年齡歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并通過計算判斷是否在犯錯誤的概率不超過的前提下認為“使用微信交流的態(tài)度與人的年齡有關”?
年齡不低于歲的人數(shù) | 年齡低于歲的人數(shù) | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(2))若從年齡在, 的別調(diào)查的人中各隨機選取兩人進行追蹤調(diào)查,記選中的人中贊成“使用微信交流”的人數(shù)為,求隨機變量的分布列及數(shù)學期望.
附:參考數(shù)據(jù)如下:
參考公式: ,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com