1.已知f(x)=x2+ax+b,a,b∈R,若f(x)>0的解集為{x|x<0或x>2}.
(Ⅰ)求a,b的值;
(Ⅱ)解不等式f(x)<m2-1.

分析 (Ⅰ)利用方程的根,列出方程組,即可求解a,b的值;
(Ⅱ)化簡不等式為乘積的形式,通過因式的根的大小對m討論,求解不等式的解集即可.

解答 (本小題滿分12分)
解:(Ⅰ)根據(jù)題意可知,方程x2+ax+b=0兩根分別為0,2,…(2分)
將兩根代入方程得$\left\{\begin{array}{l}b=0\\ 4+2a+b=0\end{array}\right.$∴$\left\{\begin{array}{l}a=-2\\ b=0\end{array}\right.$.…(4分)
(Ⅱ)由(Ⅰ)可知不等式f(x)<m2-1為x2-2x<m2-1,
即[x-(1-m)][x-(1+m)]<0,…(6分)
∴當(dāng)m=0時,1-m=1+m,不等式的解集為Φ;…(8分)
當(dāng)m>0時,1-m<1+m,不等式的解集為{x|1-m<x<1+m}; …(10分)
當(dāng)m<0時,1+m<1-m,不等式的解集為{x|1+m<x<1-m}.…(12分)
(如上,沒有“綜上所述…”,不扣分)

點(diǎn)評 本題考查二次函數(shù)的簡單性質(zhì)的應(yīng)用,考查分類討論思想以及轉(zhuǎn)化思想的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=$\sqrt{{x}^{2}-5x-6}$的定義域?yàn)椋?∞,-1]∪[6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|2<x<4},B={x|x2-4x+3<0},則A∩B=( 。
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差為d,若$\frac{{{S_{2017}}}}{2017}-\frac{{{S_{17}}}}{17}=100$,則d的值為$\frac{1}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),且滿足an+2Sn=2n+2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:$\frac{1}{{3({a_1}-2)({a_2}-2)}}+\frac{1}{{{3^2}({a_2}-2)({a_3}-2)}}+…+\frac{1}{{{3^n}({a_n}-2)({a_{n+1}}-2)}}<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,Sn+1=4an+2(n∈N*).
(1)設(shè)bn=an+1-2an,證明數(shù)列{bn}是等比數(shù)列(要指出首項(xiàng)、公比);
(2)若cn=nbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.高二年級有500名學(xué)生,為了了解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機(jī)抽出若干名學(xué)生在一次測試中的數(shù)學(xué)成績,制成如下頻率分布表:
分組頻數(shù)頻率
[85,95)0.025
[95,105)0.050
[105,115)0.200
[115,125)120.300
[125,135)0.275
[135,145)4
[145,155]0.050
合計(jì)
(1)根據(jù)圖表,①②③處的數(shù)值分別為1、0.1、1;
(2)在所給的坐標(biāo)系中畫出[85,155]的頻率分布直方圖;
(3)根據(jù)題中信息估計(jì)總體落在[125,155]中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.圓x2+y2=r2(r為正常數(shù))上任一點(diǎn)P到M$(\frac{r}{3}$,0)及N(a,0)的距離之比為常數(shù)k,則a=3r,k=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知lga,lgb是方程2x2-4x+1=0的兩個根,則${(lg\frac{a})^2}$的值是(  )
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊答案