分析 (Ⅰ)運用代入法,將x=6,y=11,代入函數式,計算即可得到a的值;
(Ⅱ)由(1)可知,該商品每日的銷售量y=$\frac{2}{x-4}$+10(x-7)2,求出商場每日銷售該商品所獲得的利潤,再求導數,可得在(3,7)的單調區(qū)間,及極值,且為最值.
解答 解:(Ⅰ)因為x=6時,y=11,所以$\frac{a}{2}$+10=11,a=2.…(2分)
(Ⅱ)由(1)可知,該商品每日的銷售量y=$\frac{2}{x-4}$+10(x-7)2,
所以商場每日銷售該商品所獲得的利潤為
f(x)=(x-4)[$\frac{2}{x-4}$+10(x-7)2]=2+10(x-4)(x-7)2,(3<x<7)…(6分)
從而,f′(x)=10[(x-7)2+2(x-4)(x-7)]=30(x-5)(x-7),
令f′(x)=0,得x=5或x=7(舍去).
因為當x∈(3,5)時,f′(x)>0,當x∈(5,7)時,f′(x)<0,
所以f (x)在(3,7)取得唯一的極大值,也就是最大值.
所以,當x=5時,函數f(x)取得最大值,且最大值等于42.
答:當銷售價格為5元/千克時,商場每日銷售該商品所獲得的利潤最大.…(13分)
點評 本題考查函數模型在實際問題中的應用,考查導數的運用:求單調區(qū)間和極值、最值,考查化簡整理的運算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 6 | B. | 5 | C. | 9 | D. | -$\frac{5}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
作文成績優(yōu)秀 | 作文成績一般 | 合計 | |
閱讀量大 | 18 | 9 | |
閱讀量少 | 8 | 15 | |
合計 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com