【題目】如圖,在三棱錐P-ABC中,平面平面ABC,,.

1)若,求證:平面平面PBC;

2)若PA與平面ABC所成的角為,求二面角C-PB-A的余弦值.

【答案】1)見解析 2

【解析】

(1)利用面面垂直的性質(zhì)定理證明平面,由此即可證明平面平面;

(2)根據(jù)條件建立空間直角坐標系,求解出平面、平面的法向量,利用法向量夾角的余弦值求解出二面角的余弦值.

解:(1)證明:因為平面平面ABC,平面平面,平面ABC,

所以平面PAC,由平面PAC,所以,

又因為,所以平面PBC,

因為平面PAB,所以平面平面PBC;

2)過P,因為平面平面ABC,

所以平面ABC,所以,

不妨設(shè),所以

C為原點,分別以CACB所在的直線為x,y軸,以過C點且平行于PH的直線為z軸,

建立空間直角坐標系如圖所示,

,

,

設(shè)為面PAB的一個法向量,

則有,即,令,可得,

設(shè)為面PBC的一個法向量,

則有,即,令,可得

所以,

所以二面角C-PB-A的余弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,(其中常數(shù)).

(1)當時,求函數(shù)的極值;

(2)若函數(shù)有兩個零點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】條形圖給出的是2017年全年及2018年全年全國居民人均可支配收入的平均數(shù)與中位數(shù),餅圖給出的是2018年全年全國居民人均消費及其構(gòu)成,現(xiàn)有如下說法:

①2018年全年全國居民人均可支配收入的平均數(shù)的增長率低于2017年;

②2018年全年全國居民人均可支配收入的中位數(shù)約是平均數(shù)的;

③2018年全年全國居民衣(衣著)食(食品煙酒)。ň幼。┬校ń煌ㄍㄐ牛┑闹С龀^人均消費的.

則上述說法中,正確的個數(shù)是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓 ()的左、右焦點分別為,過的直線交橢圓于,兩點,若橢圓的離心率為,的周長為.

(1)求橢圓的方程;

(2)設(shè)不經(jīng)過橢圓的中心而平行于弦的直線交橢圓于點,,設(shè)弦的中點分別為,證明:三點共線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為F,準線為l,過F的直線與E交于A,B兩點,C,D分別為A,Bl上的射影,且MAB中點,則下列結(jié)論正確的是(

A.B.為等腰直角三角形

C.直線AB的斜率為D.的面積為4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線過點.

1)求拋物線的方程;

2)設(shè)軸上一點,為拋物線上任意一點,求的最小值;

3)過拋物線的焦點,作相互垂直的兩條弦,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中,角所對的邊分別是,的面積為,且,.

(1)求的值;

(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的四個頂點組成的四邊形的面積為,且經(jīng)過點

1求橢圓的方程;

2若橢圓的下頂點為,如圖所示,點為直線上的一個動點,過橢圓的右焦點的直線垂直于,且與交于兩點,與交于點,四邊形的面積分別為的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的六面體中,四邊形是邊長為的正方形,四邊形是梯形,,平面平面,,.

1)在圖中作出平面 與平面的交線,并寫出作圖步驟,但不要求證明;

2)求證:平面;

3)求平面與平面所成角的余弦值

查看答案和解析>>

同步練習冊答案