【題目】如圖,在三棱錐P-ABC中,平面平面ABC,,.
(1)若,求證:平面平面PBC;
(2)若PA與平面ABC所成的角為,求二面角C-PB-A的余弦值.
【答案】(1)見解析 (2)
【解析】
(1)利用面面垂直的性質(zhì)定理證明平面,由此即可證明平面平面;
(2)根據(jù)條件建立空間直角坐標系,求解出平面、平面的法向量,利用法向量夾角的余弦值求解出二面角的余弦值.
解:(1)證明:因為平面平面ABC,平面平面,平面ABC,,
所以平面PAC,由平面PAC,所以,
又因為,所以平面PBC,
因為平面PAB,所以平面平面PBC;
(2)過P作,因為平面平面ABC,
所以平面ABC,所以,
不妨設(shè),所以,
以C為原點,分別以CA,CB所在的直線為x,y軸,以過C點且平行于PH的直線為z軸,
建立空間直角坐標系如圖所示,
則,
,,
設(shè)為面PAB的一個法向量,
則有,即,令,可得,
設(shè)為面PBC的一個法向量,
則有,即,令,可得,
所以,
所以二面角C-PB-A的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】條形圖給出的是2017年全年及2018年全年全國居民人均可支配收入的平均數(shù)與中位數(shù),餅圖給出的是2018年全年全國居民人均消費及其構(gòu)成,現(xiàn)有如下說法:
①2018年全年全國居民人均可支配收入的平均數(shù)的增長率低于2017年;
②2018年全年全國居民人均可支配收入的中位數(shù)約是平均數(shù)的;
③2018年全年全國居民衣(衣著)食(食品煙酒)。ň幼。┬校ń煌ㄍㄐ牛┑闹С龀^人均消費的.
則上述說法中,正確的個數(shù)是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓 ()的左、右焦點分別為,過的直線交橢圓于,兩點,若橢圓的離心率為,的周長為.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過橢圓的中心而平行于弦的直線交橢圓于點,,設(shè)弦,的中點分別為,證明:三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為F,準線為l,過F的直線與E交于A,B兩點,C,D分別為A,B在l上的射影,且,M為AB中點,則下列結(jié)論正確的是( )
A.B.為等腰直角三角形
C.直線AB的斜率為D.的面積為4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋物線:過點.
(1)求拋物線的方程;
(2)設(shè)為軸上一點,為拋物線上任意一點,求的最小值;
(3)過拋物線的焦點,作相互垂直的兩條弦和,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的四個頂點組成的四邊形的面積為,且經(jīng)過點.
(1)求橢圓的方程;
(2)若橢圓的下頂點為,如圖所示,點為直線上的一個動點,過橢圓的右焦點的直線垂直于,且與交于兩點,與交于點,四邊形和的面積分別為.求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的六面體中,四邊形是邊長為的正方形,四邊形是梯形,,平面平面,,.
(1)在圖中作出平面 與平面的交線,并寫出作圖步驟,但不要求證明;
(2)求證:平面;
(3)求平面與平面所成角的余弦值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com