【題目】已知 =(cosα,sinα), =(cosβ,sinβ),(0<β<α<π).
(1)若 ,求證: ;
(2)設(shè) ,若 ,求α,β的值.

【答案】
(1)證明: =(cosα,sinα), =(cosβ,sinβ),

=cos2α+sin2α=1,

=cos2β+sin2β=1;

,

+2 + =1+2 +1=2,

解得 =0,

;


(2)解:∵ ,

∴(cosα+cosβ,sinα+sinβ)=(0,1),

,

兩邊平方,得1=2﹣2sinβ,

解得sinβ= ,sinα=1﹣ = ;

又∵0<β<α<π,

∴α= ,β=


【解析】(1)根據(jù)平面向量的數(shù)量積運算和模長公式,求出 =0即可證明 ;(2)利用平面向量的坐標運算法則和三角恒等變換,求出sinβ和sinα的值,即可求出β與α的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在三棱錐A﹣BCD中,AB=CD,且點M,N分別是BC,AD的中點.若直線AB⊥CD,則直線AB與MN所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x)是定義在(0,+∞)上的減函數(shù),滿足f(x)+f(y)=f(xy).
(1)求證: ;
(2)若f(4)=﹣4,解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐S﹣ABCD中,E,M,N分別是BC,CD,SC的中點,動點P在線段MN上運動時,下列四個結(jié)論中恒成立的個數(shù)為( )
(1)EP⊥AC;
(2)EP∥BD;
(3)EP∥面SBD;
(4)EP⊥面SAC.

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,a=2bsinA,則cosA+sinC的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的圓心是直線x﹣y+1=0與x軸的交點,且圓C與(x﹣2)2+(y﹣4)2=9相外切,若過點P(﹣1,1)的直線l與圓C交于A,B兩點,當∠ACB最小時,弦AB的長為(
A.4
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年空氣質(zhì)量逐步霧霾天氣現(xiàn)象增多,大氣污染危害加重,大氣污染可引起心悸,呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機的對入院50人進行了問卷調(diào)查得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為.

(1)請將上面的列聯(lián)表補充完整,并判斷是否有99.5%的把握認為患心肺疾病與性別有關(guān)?說明你的理由;

(2)已知在患心肺疾病的10位女性中,有3位又患胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3名進行其他方面的排查,記選出患胃病的女性人數(shù)為,求的分布列、數(shù)學(xué)期望及方差,下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A,B,C所對的邊長分別為a,b,c.已知 ,
(Ⅰ)當b=2時,求c;
(Ⅱ)求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且bsinA=asin2B.
(Ⅰ)求角B;
(Ⅱ)若b= ,a+c=ac,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案