【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關(guān),在某醫(yī)院隨機(jī)的對(duì)入院50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計(jì) | 30 | 20 | 50 |
(Ⅰ)用分層抽樣的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?
(Ⅱ)在上述抽取的6人中選2人,求恰有一名女性的概率;
(Ⅲ)為了研究心肺疾病是否與性別有關(guān),請(qǐng)計(jì)算出統(tǒng)計(jì)量K2 , 你有多大的把握認(rèn)為心肺疾病與性別有關(guān)?
下面的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式 ,其中n=a+b+c+d)
【答案】解:(I)在患心肺疾病的人群中抽6人,則抽取比例為 = , ∴男性應(yīng)該抽取20× =4人
(II)在上述抽取的6名學(xué)生中,女性的有2人,男性4人.女性2人記A,B;男性4人為c,d,e,f,則從6名學(xué)生任取2名的所有情況為:(A,B)、(A,c)、(A,d)、(A,e)、(A,f)、(B,c)、(B,d)、(B,e)、(B,f)、(c,d)、(c,e)、(c,f)、(d,e)、(d,f)、(e,f)共15種情況,其中恰有1名女生情況有:(A,c)、(A,d)、(A,e)、(A,f)、(B,c)、(B,d)、(B,e)、(B,f),共8種情況,
故上述抽取的6人中選2人,恰有一名女性的概率概率為P= .
(III)∵K2≈8.333,且P(k2≥7.879)=0.005=0.5%,
那么,我們有99.5%的把握認(rèn)為是否患心肺疾病是與性別有關(guān)系的
【解析】(I)根據(jù)分層抽樣的方法,在患心肺疾病的人群中抽6人,先計(jì)算了抽取比例,再根據(jù)比例即可求出男性應(yīng)該抽取人數(shù).(II)在上述抽取的6名學(xué)生中,女性的有2人,男性4人.女性2人記A,B;男性4人為c,d,e,f,列出其一切可能的結(jié)果組成的基本事件個(gè)數(shù),通過列舉得到滿足條件事件數(shù),求出概率.(III)根據(jù)所給的公式,代入數(shù)據(jù)求出臨界值,把求得的結(jié)果同臨界值表進(jìn)行比較,看出有多大的把握認(rèn)為心肺疾病與性別有關(guān).
【考點(diǎn)精析】利用分層抽樣對(duì)題目進(jìn)行判斷即可得到答案,需要熟知先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟,然后再在各個(gè)類型或?qū)哟沃胁捎煤?jiǎn)單隨機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式ax2+bx﹣1<0的解集為{x|﹣1<x<2}.
(1)計(jì)算a、b的值;
(2)求解不等式x2﹣ax+b>0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是平行四邊形ABCD所在平面外一點(diǎn),E是PD的中點(diǎn).
(1)求證:PB∥平面EAC;
(2)若M是CD上異于C、D的點(diǎn).連結(jié)PM交CE于G,連結(jié)BM交AC于H,求證:GH∥PB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,可以將函數(shù)y=sin2x的圖象( )
A.向右平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向左平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中, 是邊長(zhǎng)為4的正方形.平面⊥平面, .
(1)求證: ⊥平面ABC;
(2)求二面角的余弦值;
(3)證明:在線段存在點(diǎn),使得,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O1和圓O2的極坐標(biāo)方程分別為ρ=2, .
(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過兩圓交點(diǎn)的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《最強(qiáng)大腦》是大型科學(xué)競(jìng)技類真人秀節(jié)目,是專注傳播腦科學(xué)知識(shí)和腦力競(jìng)技的節(jié)目.某機(jī)構(gòu)為了了解大學(xué)生喜歡《最強(qiáng)大腦》是否與性別有關(guān),對(duì)某校的100名大學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡《最強(qiáng)大腦》 | 不喜歡《最強(qiáng)大腦》 | 合計(jì) | |
男生 | 15 | ||
女生 | 15 | ||
合計(jì) |
已知在這100人中隨機(jī)抽取1人抽到不喜歡《最強(qiáng)大腦》的大學(xué)生的概率為0.4
( I)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;判斷是否有99.9%的把握認(rèn)為喜歡《最強(qiáng)大腦》與性別有關(guān),并說明理由;
( II)已知在被調(diào)查的大學(xué)生中有5名是大一學(xué)生,其中3名喜歡《最強(qiáng)大腦》,現(xiàn)從這5名大一學(xué)生中隨機(jī)抽取2人,抽到喜歡《最強(qiáng)大腦》的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
下面的臨界值表僅參考:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2=,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為 ,且圖象上一個(gè)最低點(diǎn)為 . (Ⅰ)求f(x)的解析式;
(Ⅱ)當(dāng) ,求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω>0,0<|φ|<π)在一個(gè)周期內(nèi)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求g(x)=f(3x+ )﹣1在[﹣ , ]上的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com