【題目】已知不等式ax2+bx﹣1<0的解集為{x|﹣1<x<2}.
(1)計(jì)算a、b的值;
(2)求解不等式x2﹣ax+b>0的解集.
【答案】
(1)解:∵不等式ax2+bx﹣1<0的解集為{x|﹣1<x<2},
∴方程ax2+bx﹣1=0的兩個(gè)根為﹣1和2,
將兩個(gè)根代入方程中得 ,
解得:a= ,b=﹣
(2)解:由(1)得不等式為x2﹣ x﹣ >0,
即2x2﹣x﹣1>0,
∵△=(﹣1)2﹣4×2×(﹣1)=9>0,
∴方程2x2﹣x﹣1=0的兩個(gè)實(shí)數(shù)根為:x1=﹣ ,x2=1;
因而不等式x2﹣ x﹣ >0的解集是{x|x<﹣ 或x>1}
【解析】(1)根據(jù)不等式ax2+bx﹣1<0的解集,不等式與方程的關(guān)系求出a、b的值;(2)由(1)中a、b的值解對(duì)應(yīng)不等式即可.
【考點(diǎn)精析】本題主要考查了解一元二次不等式的相關(guān)知識(shí)點(diǎn),需要掌握求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫(huà):畫(huà)出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫(xiě)出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,定點(diǎn)為圓上一動(dòng)點(diǎn),線(xiàn)段的垂直平分線(xiàn)交線(xiàn)段于點(diǎn),設(shè)點(diǎn)的軌跡為曲線(xiàn);
(Ⅰ)求曲線(xiàn)的方程;
(Ⅱ)若經(jīng)過(guò)的直線(xiàn)交曲線(xiàn)于不同的兩點(diǎn),(點(diǎn)在點(diǎn), 之間),且滿(mǎn)足,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分12分)
已知函數(shù)(其中a是實(shí)數(shù)).
(1)求的單調(diào)區(qū)間;
(2)若設(shè),且有兩個(gè)極值點(diǎn) ,求取值范圍.(其中e為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f ( x)= x2 , g ( x)=a ln x(a>0).
(Ⅰ)求函數(shù) F ( x)=f(x)g(x)的極值
(Ⅱ)若函數(shù) G( x)=f(x)﹣g(x)+(a﹣1)在區(qū)間 ( ,e) 內(nèi)有兩個(gè)零點(diǎn),求的取值范圍;
(Ⅲ)函數(shù) h( x)=g ( x )﹣x+ ,設(shè) x1∈(0,1),x2∈(1,+∞),若 h( x 2)﹣h( x 1)存在最大值,記為 M (a),則當(dāng) a≤e+1 時(shí),M (a) 是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某連鎖經(jīng)營(yíng)公司所屬5個(gè)零售店某月的銷(xiāo)售額和利潤(rùn)額資料如下表
商店名稱(chēng) | A | B | C | D | E |
銷(xiāo)售額x(千萬(wàn)元) | 3 | 5 | 6 | 7 | 9 |
利潤(rùn)額y(百萬(wàn)元) | 2 | 3 | 3 | 4 | 5 |
(1)畫(huà)出散點(diǎn)圖.觀察散點(diǎn)圖,說(shuō)明兩個(gè)變量有怎樣的相關(guān)性.
(2)用最小二乘法計(jì)算利潤(rùn)額y對(duì)銷(xiāo)售額x的回歸直線(xiàn)方程.
(3)當(dāng)銷(xiāo)售額為4(千萬(wàn)元)時(shí),估計(jì)利潤(rùn)額的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,E是CD上一點(diǎn),AB=AD=3,AA1=2,CE=1,P是AA1上一點(diǎn),且DP∥平面AEB1 , F是棱DD1與平面BEP的交點(diǎn),則DF的長(zhǎng)為( )
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)國(guó)家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米.我市環(huán)保局隨機(jī)抽取了一居民區(qū)2016年20天PM2.5的24小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如表
組別 | PM2.5濃度 | 頻數(shù)(天) | 頻率 |
第一組 | (0,25] | 3 | 0.15 |
第二組 | (25,50] | 12 | 0.6 |
第三組 | (50,75] | 3 | 0.15 |
第四組 | (75,100] | 2 | 0.1 |
(1)從樣本中PM2.5的24小時(shí)平均濃度超過(guò)50微克/立方米的天數(shù)中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過(guò)75微克/立方米的概率;
(2)將這20天的測(cè)量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖. ①求圖中a的值;
②求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)投資1千萬(wàn)元用于一個(gè)高科技項(xiàng)目,每年可獲利25%.由于企業(yè)間競(jìng)爭(zhēng)激烈,每年底需要從利潤(rùn)中取出資金200萬(wàn)元進(jìn)行科研、技術(shù)改造與廣告投入,方能保持原有的利潤(rùn)增長(zhǎng)率.經(jīng)過(guò)多少年后,該項(xiàng)目的資金可以達(dá)到4倍的目標(biāo)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾。疄榱私饽呈行姆渭膊∈欠衽c性別有關(guān),在某醫(yī)院隨機(jī)的對(duì)入院50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計(jì) | 30 | 20 | 50 |
(Ⅰ)用分層抽樣的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?
(Ⅱ)在上述抽取的6人中選2人,求恰有一名女性的概率;
(Ⅲ)為了研究心肺疾病是否與性別有關(guān),請(qǐng)計(jì)算出統(tǒng)計(jì)量K2 , 你有多大的把握認(rèn)為心肺疾病與性別有關(guān)?
下面的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式 ,其中n=a+b+c+d)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com