精英家教網 > 高中數學 > 題目詳情
設隨機變量X的概率分布為
X
1
2
3
4
P

m


則P(|X-3|=1)=     .
+m++=1,解得m=,P(|X-3|=1)=P(X=2)+P(X=4)=+=.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

一個袋子中裝有7個小球,其中紅球4個,編號分別為1,2,3,4,黃球3個,編號分別為2,4,6,從袋子中任取4個小球(假設取到任一小球的可能性相等).
(1)求取出的小球中有相同編號的概率;
(2)記取出的小球的最大編號為,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

甲、乙兩名教師進行乒乓球比賽,采用七局四勝制(先勝四局者獲勝).若每一局比賽甲獲勝的概率為,乙獲勝的概率為,現(xiàn)已賽完兩局,乙暫時以2∶0領先.
(1)求甲獲得這次比賽勝利的概率;
(2)設比賽結束時比賽的局數為隨機變量X,求隨機變量X的概率分布和數學期望EX.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某市四所中學報名參加某高校今年自主招生的學生人數如下表所示:
中學
 
 
 
 
人數
 
 
 
 
為了了解參加考試的學生的學習狀況,該高校采用分層抽樣的方法從報名參加考試的四所中學的學生當中隨機抽取50名參加問卷調查.
(1)問四所中學各抽取多少名學生?
(2)從參加問卷調查的名學生中隨機抽取兩名學生,求這兩名學生自同一所中學的概率;
(3)在參加問卷調查的名學生中,從自兩所中學的學生當中隨機抽取兩名學
生,用表示抽得中學的學生人數,求的分布列和期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

現(xiàn)有甲、乙兩個靶.某射手向甲靶射擊兩次,每次命中的概率為,每命中一次得1分,沒有命中得0分;向乙靶射擊一次,命中的概率為,命中得2分,沒有命中得0分.該射手每次射擊的結果相互獨立.假設該射手完成以上三次射擊.
(I)求該射手恰好命中兩次的概率;
(II)求該射手的總得分的分布列及數學期望;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

(1-x)5•(1+x)4的展開式中x3項的系數為( 。
A.-6B.-4C.4D.6

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設袋子中裝有a個紅球,b個黃球,c個藍球,且規(guī)定:取出一個紅球得1分,取出一個黃球得2分,取出一個藍球得3分.
(1)當a=3,b=2,c=1時,從該袋子中任取(有放回,且每球取到的機會均等)2個球,記隨機變量ξ為取出此兩球所得分數之和,求ξ分布列;
(2)從該袋子中任取(且每球取到的機會均等)1個球,記隨機變量η為取出此球所得分數.若E(η)=,V(η)=,求a∶b∶c.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知甲箱中只放有x個紅球與y個白球,乙箱中只放有2個紅球、1個白球與1個黑球(球除顏色外,無其它區(qū)別). 若甲箱從中任取2個球, 從乙箱中任取1個球.
(Ⅰ)記取出的3個球的顏色全不相同的概率為P,求當P取得最大值時的值;
(Ⅱ)當時,求取出的3個球中紅球個數的期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

某射手射擊所得環(huán)數X的分布列如下:
X
7
8
9
10
P
x
0.1
0.3
y
已知X的期望E(X)=8.9,則y的值為________.

查看答案和解析>>

同步練習冊答案