已知tanα,tanβ是方程3x2-4x-5=0的兩個(gè)根,求cot(α+β)的值.
分析:由tanα,tanβ為已知方程的兩根,利用韋達(dá)定理表示出tanα+tanβ及tanαtanβ的值,然后把所求的式子先寫成正切形式,再利用兩角和的正切函數(shù)公式化簡后,將tanα+tanβ及tanαtanβ的值代入即可求出值.
解答:解:由題意得tanα+tanβ=
4
3
,tanα•tanβ=-
5
3
…(4分)
tan(α+β)=
tanα+tanβ
1-tanα•tanβ
=
4
3
1-(-
5
3
)
=
1
2
…(8分)
∴cot(α+β)=2…(10分)
點(diǎn)評(píng):此題考查了一元二次方程的韋達(dá)定理,以及兩角和與差的正切函數(shù)公式,和同角的三角函數(shù)之間的關(guān)系,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα,tanβ是方程x2+3
3
x+4=0的兩根,α,β∈(-
π
2
π
2
)則α+β=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題(1)?α∈R,使sinαcosα=1成立;(2)?α∈R,使tan(α+β)=tanα+tanβ成立;(3)?α∈R,都有tan(α+β)=
tanα+tanβ
1-tanαtanβ
成立.其中正確命題的個(gè)數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα,tanβ是一元二次方程2mx2+(4m-2)x+2m-3=0的兩個(gè)不等實(shí)根,求函數(shù)f(m)=5m2+3mtan(α+β)+4的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα、tanβ是方程x2-4x-2=0的兩個(gè)實(shí)根,求:cos2(α+β)+2sin(α+β)cos(α+β)-3sin2(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα,tanβ是方程x2+3
3
x+4=0
的兩根,且α,β∈(-
π
2
,
π
2
)
,則α+β=( 。
A、
π
3
-
3
B、-
π
3
3
C、
π
3
D、-
3

查看答案和解析>>

同步練習(xí)冊(cè)答案