【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程t為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C2的極坐標(biāo)方程為ρ4sinθ

1)求C1的極坐標(biāo)方程與C2的直角坐標(biāo)方程;

2)已知射線C1交于O,P兩點,與C2交于O,Q兩點,且QOP的中點,求α

【答案】1x2+y224

2α

【解析】

1)曲線C1的參數(shù)方程消去參數(shù)t即可轉(zhuǎn)化為直角坐標(biāo)方程,再轉(zhuǎn)化為極坐標(biāo)方程,利用可將C2的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;(2)由題意可設(shè),,利用極徑和三角函數(shù)關(guān)系式即可求出結(jié)果.

1)曲線C1的參數(shù)方程t為參數(shù)),消去參數(shù)t轉(zhuǎn)換為直角坐標(biāo)方程為x24y,

轉(zhuǎn)化為極坐標(biāo)方程為.

曲線C2的極坐標(biāo)方程為,即

將上式轉(zhuǎn)換為直角坐標(biāo)方程為x2+y24y,整理得x2+y224

2)由題意可設(shè),

因為射線C1交于O,P兩點,所以,

C2交于OQ兩點,所以,

QOP的中點,所以,

,化簡得

因為,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺)

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測6月份該商場空調(diào)的銷售量;

(2)若該商場的營銷部對空調(diào)進(jìn)行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進(jìn)行問卷調(diào)查.假設(shè)該地擬購買空調(diào)的消費群體十分龐大,經(jīng)過營銷部調(diào)研機構(gòu)對其中的500名顧客進(jìn)行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

有購買意愿對應(yīng)的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機抽取6名,再從這6人中隨機抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)將按照如下規(guī)律從左到右進(jìn)行排列:若每一個或“○”占1個位置,即上述圖形中,第1位是“□”,第4位是“○”,第7位是 “□”,則在第2017位之前(不含第2017位),“○”的個數(shù)為(

□,○,□,○,○,○,□,○,○,○,○,○,□,○,○,○,○,○,○,○

A.1970B.1971C.1972D.1973

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的兩個焦點分別為,點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.

(1)求橢圓C的方程;

(2)過點M(1,0)的直線與橢圓C相交于AB兩點,設(shè)點N(3,2),記直線AN、BN的斜率分別為k1、k2,求證:k1+k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線Cx24y的準(zhǔn)線上任意一點P作拋物線的切線PAPB,切點分別為A,B,則A點到準(zhǔn)線的距離與B點到準(zhǔn)線的距離之和的最小值是(

A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個袋子中有5個大小相同的球,其中3個白球與2個黑球,現(xiàn)從袋中任意取出一個球,取出后不放回,然后再從袋中任意取出一個球,則第一次為白球、第二次為黑球的概率為(  )

A B C D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,點的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過點,曲線的參數(shù)方程為 (為參數(shù)).

(Ⅰ)求曲線上的點到直線的距離的最大值;

(Ⅱ)過點與直線平行的直線與曲線 交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某親子公園擬建議廣告牌,將邊長為米的正方形ABCD和邊長為1米的正方形AEFGA點處焊接,AM、AN、GM、DN均用加強鋼管支撐,其中支撐鋼管GM、DN垂直于地面于M點和N點,且GM、DN、MN長度相等不計焊接點大小

時,求焊接點A離地面距離;

若記,求加強鋼管AN最長為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡稱“創(chuàng)城”)活動中,教委對本區(qū)四所高中學(xué)校按各校人數(shù)分層抽樣,隨機抽查了100人,將調(diào)查情況進(jìn)行整理后制成下表:

學(xué)校

抽查人數(shù)

50

15

10

25

“創(chuàng)城”活動中參與的人數(shù)

40

10

9

15

(注:參與率是指:一所學(xué)校“創(chuàng)城”活動中參與的人數(shù)與被抽查人數(shù)的比值)假設(shè)每名高中學(xué)生是否參與”創(chuàng)城”活動是相互獨立的.

(1)若該區(qū)共2000名高中學(xué)生,估計學(xué)校參與“創(chuàng)城”活動的人數(shù);

(2)在隨機抽查的100名高中學(xué)生中,隨機抽取1名學(xué)生,求恰好該生沒有參與“創(chuàng)城”活動的概率;

(3)在上表中從兩校沒有參與“創(chuàng)城”活動的同學(xué)中隨機抽取2人,求恰好兩校各有1人沒有參與“創(chuàng)城”活動的概率是多少?

查看答案和解析>>

同步練習(xí)冊答案